Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genom Data ; 10: 91-96, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27766204

RESUMEN

Staphylococcus hominis is a predominant member of the human skin microbiome. We here report on the genomic analysis of Staphylococcus hominis strain Hudgins that was isolated from the wrist area of human skin. The partial genome assembly of S. hominis Hudgins consists of 2,211,863 bp of DNA with 2174 protein-coding genes and 90 RNA genes. Based on the genomic analysis of KEGG pathways, the organism is expected to be a versatile heterotroph potentially capable of hydrolyzing the sugars glucose, fructose, mannose, and the amino acids alanine, aspartate, glutamate, glycine, threonine, cysteine, methionine, valine, isoleucine, leucine, lysine, arginine, phenylalanine, tyrosine, and tryptophan for energy production through aerobic respiration, with occasional lactate and acetate fermentation. Evidence for poly-gamma glutamate capsule and type IV Com system pili were identified in the genome. Based on COG analysis, the genome of S. hominis Hudgins clusters away from the previously published S. hominis genome ZBW5.

2.
Genom Data ; 10: 54-60, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27699150

RESUMEN

Microbacterium oleivorans is a predominant member of hydrocarbon-contaminated environments. We here report on the genomic analysis of M. oleivorans strain Wellendorf that was isolated from an indoor door handle. The partial genome of M. oleivorans strain Wellendorf consists of 2,916,870 bp of DNA with 2831 protein-coding genes and 49 RNA genes. The organism appears to be a versatile mesophilic heterotroph potentially capable of hydrolysis a suite of carbohydrates and amino acids. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine. This is the first detailed analysis of a Microbacterium oleivorans genome.

3.
Genom Data ; 10: 63-68, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27699151

RESUMEN

The genus Pantoea is a predominant member of host-associated microbiome. We here report on the genomic analysis of Pantoea eucrina strain Russ that was isolated from a trashcan at Oklahoma State University, Stillwater, OK. The draft genome of Pantoea eucrina strain Russ consists of 3,939,877 bp of DNA with 3704 protein-coding genes and 134 RNA genes. This is the first report of a genome sequence of a member of Pantoea eucrina. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of all amino acids as well as glucose, fructose, mannose, xylose, arabinose and galactose, suggesting the organism is a versatile heterotroph. The genome also encodes an extensive secretory machinery including types I, II, III, IV, and Vb secretion systems, and several genes for pili production including the new usher/chaperone system (pfam 05,229). The implications of these systems for opportunistic pathogenesis are discussed.

4.
Genom Data ; 9: 148-53, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27583205

RESUMEN

Micrococcus luteus is a predominant member of skin microbiome. We here report on the genomic analysis of Micrococcus luteus strain O'Kane that was isolated from an elevator. The partial genome assembly of Micrococcus luteus strain O'Kane is 2.5 Mb with 2256 protein-coding genes and 62 RNA genes. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, galactose, fructose, mannose, alanine, aspartate, asparagine, glutamate, glutamine, glycine, serine, cysteine, methionine, arginine, proline, histidine, phenylalanine, and fatty acids. Genomic comparison to other M. luteus representatives identified the potential to degrade polyhydroxybutyrates, as well as several antibiotic resistance genes absent from other genomes.

5.
Genom Data ; 9: 154-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27583206

RESUMEN

Pseudomonas moraviensis is a predominant member of soil environments. We here report on the genomic analysis of Pseudomonas moraviensis strain Devor that was isolated from a gate at Oklahoma State University, Stillwater, OK, USA. The partial genome of Pseudomonas moraviensis strain Devor consists of 6016489 bp of DNA with 5290 protein-coding genes and 66 RNA genes. This is the first detailed analysis of a P. moraviensis genome. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of fructose, xylose, mannose and all amino acids with the exception of tryptophan and valine, implying that the organism is a versatile heterotroph. The genome of P. moraviensis strain Devor was rich in transporters and, based on COG analysis, did not cluster closely with P. moraviensis R28-S genome, the only previous report of a P. moraviensis genome with a native mercury resistance plasmid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA