Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 26(6): 913-927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37985450

RESUMEN

Salt excretory halophytes are the major sources of phytoremediation of salt-affected soils. Cressa cretica is a widely distributed halophyte in hypersaline lands in the Cholistan Desert. Therefore, identification of key physio-anatomical traits related to phytoremediation in differently adapted C. cretica populations was focused on. Four naturally adapted ecotypes of non-succulent halophyte Cressa cretica L. form hyper-arid and saline desert Cholistan. The selected ecotypes were: Derawar Fort (DWF, ECe 20.8 dS m-1) from least saline site, Traway Wala Toba (TWT, ECe 33.2 dS m-1) and Bailah Wala Dahar (BWD, ECe 45.4 dS m-1) ecotypes were from moderately saline sites, and Pati Sir (PAS, ECe 52.4 dS m-1) was collected from the highly saline site. The natural population of this species was collected and carefully brought to the laboratory for different structural and functional traits. As a result of high salinity, Na+, Cl-, K+, and Ca2+ content significantly increased at root and shoot level. At root level, some distinctive modifications such as increased sclerification in vascular bundles, enlarged vascular bundles, metaxylem vessels, phloem region, and storage parenchyma (cortex) are pivotal for water storage under extreme arid and osmotic condition. At the stem level, enhanced sclerification in outer cortex and vascular bundles, stem cellular area, cortical proportion, metaxylem and phloem area, and at the leaf level, very prominent structural adaptations were thicker and smaller leaves with increased density of salt glands and trichomes at surface, few and large stomata, reduced cortical and mesophyll parenchyma, and narrow xylem vessels and phloem area represent their non-succulent nature. The ecotype collected from hypersaline environments was better adapted regarding growth traits, ion uptake and excretion, succulence, and phytoremediation traits. More importantly, structural and functional traits such as root length and biomass, accumulation of toxic ions along with K+ in root and shoot, accumulation of Ca2+ in shoot and Mg2+ in root, excretion of toxic ions were the highest in this ecotype. In conclusion, all these alterations strongly favor water conservation, which certainly contributes to ecotypes survival under salt-induced physiological drought.


Naturally adapted salt tolerant plants provide exceptional material for exploring adaptive mechanisms they use to confront high salt concentrations. Cressa cretica is a hypersaline hyperarid desert colonizer, which was previously underexplored. In the present study, we focused on the new insight on relationship among anatomical modifications, salt accumulation and excretion and phytoremediation potential of this rare species.


Asunto(s)
Álcalis , Suelo , Biodegradación Ambiental , Suelo/química , Solución Salina , Cloruro de Sodio , Iones , Plantas Tolerantes a la Sal/química , Plantas Tolerantes a la Sal/fisiología , Salinidad
2.
Biomimetics (Basel) ; 8(1)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36975328

RESUMEN

Ostriches are known to be the fastest bipedal animal alive; to accomplish such an achievement, their anatomy evolved to sustain the stresses imposed by running at such velocities. Ostriches represent an excellent case study due to the fact that their locomotor kinematics have been extensively studied for their running capabilities. The shape and structure of ostrich bones are also known to be optimized to sustain the stresses imposed by the body mass and accelerations to which the bones are subjected during movements. This study focuses on the limb bones, investigating the structure of the bones as well as the material properties, and how both the structure and material evolved to maximise the performance while minimising the stresses applied to the bones themselves. The femoral shaft is hollowed and it presents an imbricate structure of fused bone ridges connected to the walls of the marrow cavity, while the tibial shaft is subdivided into regions having different mechanical characteristics. These adaptations indicate the optimization of both the structure and the material to bear the stresses. The regionalization of the material highlighted by the mechanical tests represents the capability of the bone to adapt to external stimuli during the life of an individual, optimizing not only the structure of the bone but the material itself.

3.
Angew Chem Int Ed Engl ; 62(18): e202301319, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36866857

RESUMEN

Self-assembly of a flexible tritopic aniline and 3-substituted 2-formylpyridine subcomponents around iron(II) templates gave rise to a low-spin FeII 4 L4 capsule, whereas a high-spin FeII 3 L2 sandwich species formed when a sterically hindered 6-methyl-2-formylpyridine was used. The FeII 4 L4 cage adopted a new structure type with S4 symmetry, having two mer-Δ and two mer-Ʌ metal vertices, as confirmed by NMR and X-ray crystallographic analysis. The flexibility of the face-capping ligand endows the resulting FeII 4 L4 framework with conformational plasticity, enabling it to adapt structurally from S4 to T or C3 symmetry upon guest binding. The cage also displayed negative allosteric cooperativity in simultaneously binding different guests within its cavity and at the apertures between its faces.

4.
Int J Biol Macromol ; 225: 822-839, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402388

RESUMEN

Microbial lipases are very prominent biocatalysts because of their ability to catalyze a wide variety of reactions in aqueous and non-aqueous media. Here microbial lipases from different origins (psychrophiles, mesophiles, and thermophiles) have been reviewed. This review emphasizes an update of structural diversity in temperature adaptation and industrial applications, of psychrophilic, mesophilic, and thermophilic lipases. The microbial origins of lipases are logically dynamic, proficient, and also have an extensive range of industrial uses with the manufacturing of altered molecules. It is therefore of interest to understand the molecular mechanisms of adaptation to temperature in occurring lipases. However, lipases from extremophiles (psychrophiles, and thermophiles) are widely used to design biotransformation reactions with higher yields, fewer byproducts, or useful side products and have been predicted to catalyze those reactions also, which otherwise are not possible with the mesophilic lipases. Lipases as a multipurpose biological catalyst have given a favorable vision in meeting the needs of several industries such as biodiesel, foods, and drinks, leather, textile, detergents, pharmaceuticals, and medicals.


Asunto(s)
Adaptación Fisiológica , Lipasa , Temperatura , Lipasa/química , Aclimatación
5.
J Insect Physiol ; 141: 104426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35907587

RESUMEN

The trap-jaw ant Odontomachus monticola manipulates its hollow mandibles to generate extremely high speed to impact various objects through a catapult mechanism, making the violent collision occur between the mandible and the impacted objects, which increases the risk of structural failure. However, how the ant balances the trade-off between the powerful clamping and impact resistance by using this hollow structure remains elusive. In this combined experimental and theoretical investigation, we revealed that the hollowness ratio of the mandible plays an essential role in counterbalancing the trade-off. Micro-CT and high-speed images suggested that the hollow mandibles facilitate a high angular acceleration to 108 rad/s2 for an enormous clamping force. However, this hollowness might challenge the structural strength while collision occurs. We found that under the same actuating energy, the von Mises stress of the object collided by the natural mandible striking can reach up to 2.9 times that generated by the entirely solid mandible. We defined the efficiency ratio of the von Mises stress on the impacted object to that on the mandible and found the hollow mandible achieves a more robust balance between powerful clamping and impact resistance compared to the solid mandible.


Asunto(s)
Hormigas , Agresión , Animales , Fenómenos Biomecánicos , Mandíbula , Microtomografía por Rayos X
6.
Microcirculation ; : e12738, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779082

RESUMEN

OBJECTIVE: To incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. METHODS: A vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral-dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). RESULTS: The model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. CONCLUSIONS: Structural adaptation of the vasculature allows for increased blood flow to the collateral-dependent region after occlusion. Although flow is still below pre-occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.

7.
J Pestic Sci ; 46(1): 88-100, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33746550

RESUMEN

The ecdysone receptor (EcR) possesses the remarkable capacity to adapt structurally to different types of ligands. EcR binds ecdysteroids, including 20-hydroxyecdysone (20E), as well as nonsteroidal synthetic agonists such as insecticidal dibenzoylhydrazines (DBHs). Here, we report the crystal structures of the ligand-binding domains of Heliothis virescens EcR/USP bound to the DBH agonist BYI09181 and to the imidazole-type compound BYI08346. The region delineated by helices H7 and H10 opens up to tightly fit a phenyl ring of the ligands to an extent that depends on the bulkiness of ring substituent. In the structure of 20E-bound EcR, this part of the ligand-binding pocket (LBP) contains a channel filled by water molecules that form an intricate hydrogen bond network between 20E and LBP. The water channel present in the nuclear receptor bound to its natural hormone acts as a critical molecular adaptation spring used to accommodate synthetic agonists inside its binding cavity.

8.
Biomolecules ; 10(6)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560304

RESUMEN

The blood coagulation factor XIII (FXIII) plays a critical role in supporting coagulation and fibrinolysis due to both the covalent crosslinking of fibrin polymers, rendering them resistant to plasmin lysis, and the crosslinking of fibrin to proteins of the fibrinolytic system. The hypochlorite-mediated oxidation of the blood coagulation factor XIII (FXIII) at the different stages of its enzymatic activation is studied for the first time in this paper. The consolidated results obtained with the aid of MS/MS, electrophoresis, and colorimetry demonstrate that in the process of FXIII's conversion into FXIIIa, the vulnerability of FXIII to hypochlorite-induced oxidation increased as follows: native FXIII < FXIII + Ca2+ << FXIII + Ca2+/thrombin. The modification sites were detected among all the structural regions of the catalytic FXIII-A subunit, except for the activation peptide, and embraced several sushi domains of the FXIII-B subunit. Oxidized amino acid residues belonging to FXIII-A are surface-exposed residues and can perform an antioxidant role. The regulatory FXIII-B subunits additionally contribute to the antioxidant defense of the catalytic center of the FXIII-A subunits. Taken together, the present data along with the data from previous studies demonstrate that the FXIII proenzyme structure is adapted to oxidation.


Asunto(s)
Factor XIII/metabolismo , Coagulación Sanguínea , Factor XIII/química , Factor XIII/aislamiento & purificación , Femenino , Fibrinógeno/química , Fibrinógeno/aislamiento & purificación , Fibrinógeno/metabolismo , Humanos , Masculino , Oxidación-Reducción
9.
Free Radic Res ; 53(4): 430-455, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30935261

RESUMEN

Fibrinogen is highly susceptible to oxidation compared to other plasma proteins. Fibrinogen oxidation damages its structure and affects the protein function. Ozone-induced oxidative modifications of the fibrinogen Aα, Bß, and γ polypeptide chains upon addition of various amounts of the oxidiser were studied by mass spectrometry. Amino acid residues located on all three chains and main structural parts of the protein were revealed to be involved in oxidation. The αC-connector was shown to be most vulnerable to oxidation as compared to other structural parts while the E region turned out to be the most protected area of the protein. For the first time, it was established that numerous amino acid residues responsible for the conversion of fibrinogen to fibrin remain unaffected upon fibrinogen oxidation. The data obtained in this study indicate that none of the identified residues, which are considered crucial for the binding of both hole "a" and hole "b" to knob "A" and knob "B", respectively, as well as those responsible for the thrombin binding to fibrinogen E region, have been subjected to chemical alterations under moderate oxidation. The data on fibrinogen oxidation acquired in the current study enable one to assume that some of the structural fibrinogen parts and easily oxidisable residues could be endowed with antioxidant properties. New findings presented here could be essential for the detection of adaptive molecular mechanisms capable of mitigating the detrimental action of reactive oxygen species (ROS) on the functioning of oxidatively damaged fibrinogen. Data are available via ProteomeXchange with identifier PXD012046. Highlights Various oxidative modifications were detected in fibrinogen by mass spectrometry αC-connector has been shown to be most susceptible to oxidation E region proved to be least vulnerable to the action of the oxidising agent Some of the Met residues in the fibrinogen structure could operate as ROS scavengers.


Asunto(s)
Fibrinógeno/química , Espectrometría de Masas/métodos , Ozono/farmacología , Fragmentos de Péptidos/química , Fibrinógeno/efectos de los fármacos , Humanos , Oxidación-Reducción , Fragmentos de Péptidos/efectos de los fármacos
10.
FASEB J ; 32(6): 3346-3360, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401622

RESUMEN

The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of Thermococcus kodakarensis DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.


Asunto(s)
Proteínas Arqueales/química , ADN Polimerasa Dirigida por ADN/química , Simulación de Dinámica Molecular , Thermococcus/enzimología , Océano Índico
11.
Front Physiol ; 8: 813, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29114229

RESUMEN

Diameters of microvessels undergo continuous structural adaptation in response to hemodynamic and metabolic stimuli. To ensure adequate flow distribution, metabolic responses are needed to increase diameters of vessels feeding poorly perfused regions. Possible modes of metabolic control include release of signaling substances from vessel walls, from the supplied tissue and from red blood cells (RBC). Here, a theoretical model was used to compare the abilities of these metabolic control modes to provide adequate tissue oxygenation, and to generate blood flow velocities in agreement with experimental observations. Structural adaptation of vessel diameters was simulated for an observed mesenteric network structure in the rat with 576 vessel segments. For each mode of metabolic control, resulting distributions of oxygen and deviations between simulated and experimentally observed flow velocities were analyzed. It was found that wall-derived and tissue-derived growth signals released in response to low oxygen levels could ensure adequate oxygen supply, but RBC-derived signals caused inefficient oxygenation. Closest agreement between predicted and observed flow velocities was obtained with wall-derived growth signals proportional to vessel length. Adaptation in response to oxygen-independent release of a metabolic signal substance from vessel walls or the supplied tissue was also shown to be effective for ensuring tissue oxygenation due to a dilution effect if growth signal substances are released into the blood. The present results suggest that metabolic signals responsible for structural adaptation of microvessel diameters are derived from vessel walls or from perivascular tissue.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(5): 784-789, 2017 Aug 01.
Artículo en Chino | MEDLINE | ID: mdl-29761967

RESUMEN

The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

13.
Bioessays ; 38(6): 539-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27166747

RESUMEN

Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract.


Asunto(s)
Evolución Molecular , Péptidos/metabolismo , Toxinas Biológicas/metabolismo , Animales , Eucariontes/genética , Eucariontes/metabolismo , Humanos , Péptidos/química , Péptidos/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Toxinas Biológicas/química , Toxinas Biológicas/genética , Virus/genética , Virus/metabolismo
14.
Am J Phys Anthropol ; 159(1): 106-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26293309

RESUMEN

OBJECTIVE: The annual turnover rate of trabecular bone by far exceeds that of cortical bone and, therefore, is very sensitive to its daily loading regime. Here we test the hypothesis that the study of the trabecular bone architecture of the human humerus is able to differentiate between different habitual manual activities. MATERIALS AND METHODS: For this purpose, we compared the trabecular architecture of the humeral head in a Neolithic population to that of a sample of contemporary Europeans using micro-computed tomography (microCT). We defined in each specimen a spherical volume of interest with a diameter of 57.5 ± 2.5% of the maximal diameter of the humeral head to metrically analyze the bulk of humeral head trabecular architecture. We subsequently quantified the trabecular architectures in the VOIs, measuring seven standard 3D-morphometric parameters, and used univariate and multivariate statistical analyses for comparisons within and between populations. RESULTS: Univariate statistical analysis showed significant differences in a combination of 3D-morphometric parameters. A principal components analysis of the 3D-morphometrics of the trabecular architectures separated the Neolithic from the contemporary samples on the basis of differences in their gross trabecular architecture, including differences in the bone volume fraction (BV/TV), the number of trabeculae per unit length (Tb N), and the distance between trabeculae (Tb Sp). DISCUSSION: We interpret the significant differences found in the humeral trabecular bone of the Neolithic and the contemporary group as likely reflecting the distinct manual working routines. The trabecular bone configuration in the Neolithic sample shows presumably functional signatures of prehistoric subsistence techniques and activity levels.


Asunto(s)
Adaptación Fisiológica/fisiología , Cabeza Humeral/diagnóstico por imagen , Cabeza Humeral/patología , Adolescente , Adulto , Análisis de Varianza , Antropología Física , Fenómenos Biomecánicos/fisiología , Femenino , Actividades Humanas , Humanos , Masculino , Análisis de Componente Principal , Microtomografía por Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA