Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 270: 107287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37677908

RESUMEN

A facile modification of a strontium-based MOF using oxalic acid was carried out to prepare MTSr-OX MOF, which was used as a potential substance for eliminating 152+154Eu radioisotopes. Various analytical techniques were used to characterize MTSr-OX-MOF. The prepared MOF had a rod-like structure with a BET surface area of 101.55 m2 g-1. Batch sorption experiments were used to investigate the sorption performance of MTSr-OX-MOF towards 152+154Eu radionuclides where different parameters like pH, contact time, initial 152+154Eu concentration, ionic strength, and temperature were scrutinized to determine the optimum conditions for 152+154Eu removal. MTSr-OX-MOF showed superior effectiveness in the elimination of 152+154Eu with a maximum sorption capacity of 234.72 mg g-1 at pH 3.5. Kinetics fitted with the pseudo-second-order model and the Langmuir model correctly described the sorption mechanism. The thermodynamic variables were carefully examined, demonstrating that the 152+154Eu sorption was endothermic as well as spontaneous. The MTSr-OX-MOF has been found to be a significantly more effective sorbent towards 152+154Eu than that of many other adsorbents. When applied to real active waste, MTSr-OX-MOF demonstrated excellent removal performance for a wide range of radionuclides. As a result, the MTSr-OX-MOF can be recognized as an attractive solution for the 152+154Eu purification from active waste.


Asunto(s)
Monitoreo de Radiación , Contaminantes Químicos del Agua , Estroncio/análisis , Adsorción , Radioisótopos , Termodinámica , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA