Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.125
Filtrar
1.
Plant Physiol Biochem ; 216: 109096, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39250844

RESUMEN

Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.

2.
Physiol Genomics ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250150

RESUMEN

Stenothermal Antarctic notothenioid fishes are noteworthy for their history of isolation in extreme cold and their corresponding lack of the canonical heat shock response. Despite extensive transcriptomic studies, the mechanistic basis for stenothermy has not been fully elucidated. Given that the proteome better represents an organism's physiology, the possibility exists that some aspects of stenothermy arise post-transcriptionally. Here, Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by thorough assessment of proteomic responses in brain, gill, and kidney. Few cellular stress response proteins were induced, and overall responses were modest in terms of numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of the translational machinery in Antarctic notothenioids could explain these patterns. Some components of translational regulatory pathways are highly conserved (e.g., Ser-52 of eIF2α), but proteins comprising the cellular "integrative stress response" - specifically, the eIF2α kinases GCN2 and PERK - may have evolved along different trajectories in Antarctic fishes. Taken together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.

3.
Plant Cell Environ ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283161

RESUMEN

Global warming is exhibiting a seasonal trend, while different seasons have different warming variations. However, the impact of seasonal warming on plants remains unclear. This study employed Open Top Chambers (OTCs) to simulate future seasonal warming scenarios in alpine meadow. The study examined plant community dynamics following long-term seasonal warming. The transcriptional and physiological responses of two dominant species (Kobresia pygmaea and Stipa purpurea) were examined. Results suggest that seasonal warming effects are correlated with both the duration of warming and the season which warming occurs. A long annual warming duration, especially growing season warming, made plants confront various stresses. K. pygmaea adopted a stress-avoidance strategy, showing a negative response, and leading to population decline or disappearance. This kind of dieback had also been observed in other Cyperaceae species. Meanwhile, due to positive responses, S. purpurea adopted a stress-tolerance strategy and overcame the impact of warming, partially gained the dominance over Cyperaceae species. Overall vegetation coverage and plant community diversity decreased over the years. These results reveal the impact of seasonal warming to plants, explaining the reasons for changes in plant communities under seasonal warming and providing new insights for future plant conservation under seasonal warming.

4.
Elife ; 122024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258755

RESUMEN

In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.


Asunto(s)
Cannabinoides , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Receptor Notch1/metabolismo , Receptor Notch1/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Animales , Ratones , Humanos , Cannabinoides/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Cannabidiol/farmacología , Mutación
5.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273241

RESUMEN

Heat stress inhibits plant growth and productivity. Among the main regulators, B-box zinc-finger (BBX) proteins are well-known for their contribution to plant photomorphogenesis and responses to abiotic stress. Our research pinpoints that SlBBX31, a BBX protein harboring a conserved B-box domain, serves as a suppressor of plant growth and heat tolerance in tomato (Solanum lycopersicum L.). Overexpressing (OE) SlBBX31 in tomato exhibited yellowing leaves due to notable reduction in chlorophyll content and net photosynthetic rate (Pn). Furthermore, the pollen viability of OE lines obviously decreased and fruit bearing was delayed. This not only affected the fruit setting rate and the number of plump seeds but also influenced the size of the fruit. These results indicate that SlBBX31 may be involved in the growth process of tomato, specifically in terms of photosynthesis, flowering, and the fruiting process. Conversely, under heat-stress treatment, SlBBX31 knockout (KO) plants displayed superior heat tolerance, evidenced by their improved membrane stability, heightened antioxidant enzyme activities, and reduced accumulation of reactive oxygen species (ROS). Further transcriptome analysis between OE lines and KO lines under heat stress revealed the impact of SlBBX31 on the expression of genes linked to photosynthesis, heat-stress signaling, ROS scavenging, and hormone regulation. These findings underscore the essential role of SlBBX31 in regulating tomato growth and heat-stress resistance and will provide valuable insights for improving heat-tolerant tomato varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotosíntesis , Termotolerancia/genética , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Clorofila/metabolismo
6.
EMBO J ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284911

RESUMEN

Lipidated ATG8/LC3 proteins are recruited to single membrane compartments as well as autophagosomes, supporting their functions. Although recent studies have shown that Golgi-LC3 lipidation follows Golgi damage, its molecular mechanism and function under Golgi stress remain unknown. Here, by combining DLK1 overexpression as a new strategy for induction of Golgi-specific LC3 lipidation, and the application of Golgi-damaging reagents, we unravel the mechanism and role of Golgi-LC3 lipidation. Upon DLK1 overexpression, LC3 is lipidated on the Golgi apparatus in an ATG12-ATG5-ATG16L1 complex-dependent manner; a post-Golgi trafficking blockade is the primary cause of this lipidation. During Golgi stress, ATG16L1 is recruited through its interaction with V-ATPase for Golgi-LC3 lipidation. After post-Golgi trafficking inhibition, TFE3, a key regulator of the Golgi stress response, is translocated to the nucleus. Defects in LC3 lipidation disrupt this translocation, leading to an attenuation of the Golgi stress response. Together, our results reveal the mechanism and unexplored function of Golgi-LC3 lipidation in the Golgi stress response.

7.
Data Brief ; 57: 110877, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290429

RESUMEN

The prevalence of mental health problems constitutes an open challenge for modern societies, particularly for low and middle-income countries with wide gaps in mental health support. With this in mind, five datasets were analyzed to track mental health trends in Mexico City during the pandemic's first year. This included 33,234 responses to an online mental health risk questionnaire, 349,202 emergency calls, and city epidemiological, mobility, and online trend data. The COVID-19 mental health risk questionnaire collects information on socioeconomic status, health conditions, bereavement, lockdown status, and symptoms of acute stress, sadness, avoidance, distancing, anger, and anxiety, along with binge drinking and abuse experiences. The lifeline service dataset includes daily call statistics, such as total, connected, and abandoned calls, average quit time, wait time, and call duration. Epidemiological, mobility, and trend data provide a daily overview of the city's situation. The integration of the datasets, as well as the preprocessing, optimization, and machine learning algorithms applied to them, evidence the usefulness of a combined analytic approach and the high reuse potential of the data set, particularly as a machine learning training set for evaluating and predicting anxiety, depression, and post-traumatic stress disorder, as well as general psychological support needs and possible system loads.

8.
Elife ; 122024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287504

RESUMEN

The integrated stress response (ISR) is a conserved pathway in eukaryotic cells that is activated in response to multiple sources of cellular stress. Although acute activation of this pathway restores cellular homeostasis, intense or prolonged ISR activation perturbs cell function and may contribute to neurodegeneration. DNL343 is an investigational CNS-penetrant small-molecule ISR inhibitor designed to activate the eukaryotic initiation factor 2B (eIF2B) and suppress aberrant ISR activation. DNL343 reduced CNS ISR activity and neurodegeneration in a dose-dependent manner in two established in vivo models - the optic nerve crush injury and an eIF2B loss of function (LOF) mutant - demonstrating neuroprotection in both and preventing motor dysfunction in the LOF mutant mouse. Treatment with DNL343 at a late stage of disease in the LOF model reversed elevation in plasma biomarkers of neuroinflammation and neurodegeneration and prevented premature mortality. Several proteins and metabolites that are dysregulated in the LOF mouse brains were normalized by DNL343 treatment, and this response is detectable in human biofluids. Several of these biomarkers show differential levels in CSF and plasma from patients with vanishing white matter disease (VWMD), a neurodegenerative disease that is driven by eIF2B LOF and chronic ISR activation, supporting their potential translational relevance. This study demonstrates that DNL343 is a brain-penetrant ISR inhibitor capable of attenuating neurodegeneration in mouse models and identifies several biomarker candidates that may be used to assess treatment responses in the clinic.


Asunto(s)
Factor 2B Eucariótico de Iniciación , Animales , Ratones , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Estrés Fisiológico/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Humanos , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Femenino , Acetamidas , Ciclohexilaminas
9.
Oncotarget ; 15: 614-633, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288289

RESUMEN

Restoration of the p53 pathway has been a long-term goal in the field of cancer research to treat tumors with mutated p53 and aggressive clinical behavior. p53 pathway restoration in p53-deficient cancers can be achieved by small molecules via p53-dependent or p53-independent processes. Hereafter p53-independent restoration of p53-pathway-signaling in p53-deficient/mutated tumors is referred to as 'restoration of the p53 pathway'. We compare activation of p53 target genes by novel compounds PG3 and PG3-Oc, that activate p53-target genes in a p53-independent manner, and four mutant p53-activating compounds while Nutlin-3a is used as negative control. PG3 and PG3-Oc upregulate p21, PUMA, and DR5 in five cancer cell lines with various p53 mutational statuses through ATF4 (Activating Transcriptional Factor 4) and integrated stress response (ISR) independent of p53. Mutant p53-targeting compounds induce expression of the 3 major downstream p53 target genes and ATF4 in a highly variable and cell-type-dependent manner. PG3 treatment activates ATF4 through ISR via kinase HRI (Heme-Regulated Inhibitor). ATF4 mediates upregulation of PUMA, p21, and NAG-1/GDF15 (Nonsteroidal anti-inflammatory drug-activated gene 1). We note that PUMA mediates apoptosis through activation of caspase-8 in HT29 cells and potentially caspase-10 in SW480 cells. We provide a novel mechanism engaged by PG3 to induce cell death via the HRI/ATF4/PUMA axis. Our results provide unique insights into the mechanism of action of PG3 as a novel cancer therapeutic targeting p53 pathway-like tumor suppression.


Asunto(s)
Apoptosis , Transducción de Señal , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Mutación , Proteínas Proto-Oncogénicas
10.
Artículo en Inglés | MEDLINE | ID: mdl-39288868

RESUMEN

Atlantic salmon were subjected to an acute crowding scenario, and their subsequent stress responses were observed under three distinct swimming speed/water flow (WF) conditions: 0.5, 1, and 1.5 body lengths per second (BL/s). Feces, dermal mucus, and plasma were collected for analysis at 1, 6, and 24 h (h) post-stress. Additionally, the head kidney and two regions of the brain (pituitary and POA) were collected for transcript expression analysis. Fish swimming at 0.5 BL/s exhibited higher pre-stress (baseline) cortisol levels. Across all groups and matrices, the highest cortisol/cortisol metabolites (CM) levels were observed at the 1 h post-stress sampling point. At 6 h (second sampling time point), a clear decline toward baseline levels were observe in all groups. Significant increases in mean plasma glucose levels were observed at 1 h post-stress for all groups. The mean plasma lactate levels varied based on WF treatments, with a significant increase observed at 1 h only for the 1.5 BL/s group. Additionally, significant decreases in mean plasma lactate were noted at 6 and 24 h post-stress for some groups. The mRNA abundances of the tested genes (star, cyp17a1, hsd11ß2, srd5a1) increased following the stress events. These changes were not uniform across all groups and were tissue dependent. In summary, the results indicate that mucus and feces can be used as potentially less invasive matrices than blood for evaluating stress and, consequently, the welfare of Atlantic salmon in captivity.

11.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273633

RESUMEN

The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Cromosomas de las Plantas/genética , Mapeo Cromosómico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273673

RESUMEN

The functional role of long noncoding RNAs in the endothelium is highly diverse. Among their many functions, regulation of transcription factor activity and abundance is one of the most relevant. This review summarizes the recent progress in the research on the lncRNA-transcription factor axes and their implications for the vascular endothelium under physiological and pathological conditions. The focus is on transcription factors critical for the endothelial response to external stressors, such as hypoxia, inflammation, and shear stress, and their lncRNA interactors. These regulatory interactions will be exemplified by a selected number of lncRNAs that have been identified in the endothelium under physiological and pathological conditions that are influencing the activity or protein stability of important transcription factors. Thus, lncRNAs can add a layer of cell type-specific function to transcription factors. Understanding the interaction of lncRNAs with transcription factors will contribute to elucidating cardiovascular disease pathologies and the development of novel therapeutic approaches.


Asunto(s)
Endotelio Vascular , ARN Largo no Codificante , Factores de Transcripción , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endotelio Vascular/metabolismo , Animales , Regulación de la Expresión Génica , Estrés Fisiológico/genética , Células Endoteliales/metabolismo , Inflamación/metabolismo , Inflamación/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/genética
13.
Plants (Basel) ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273872

RESUMEN

The impact of global warming is increasing and thus exacerbating environmental stresses that affect plant yield and distribution, including the Eriobotrya japonica Lindl (Loquat tree). Eriobotrya japonica, a member of the Rosaceae family, is valued not only for its nutritious fruit but also for its medicinal purposes, landscape uses, and other pharmacological benefits. Nonetheless, the productivity of Eriobotrya japonica has raised a lot of concern in the wake of adverse environmental conditions. Understanding the characteristics of the LRR-RLK gene family in loquat is crucial, as these genes play vital roles in plant stress responses. In this study, 283 LRR-RLK genes were identified in the genome of E. japonica that were randomly positioned on 17 chromosomes and 24 contigs. The 283 EjLRR-RLK proteins clustered into 21 classes and subclasses in the phylogenetic analysis based on domain and protein arrangements. Further explorations in the promoter regions of the EjLRR-RLK genes showed an abundance of cis-regulatory elements that functioned in growth and development, phytohormone, and biotic and abiotic responses. Most cis-elements were present in the biotic and abiotic responses suggesting that the EjLRR-RLK genes are invested in regulating both biotic and abiotic stresses. Additional investigations into the responses of EjLRR-RLK genes to abiotic stress using the RT-qPCR revealed that EjLRR-RLK genes respond to abiotic stress, especially heat and salt stresses. Particularly, EjapXI-1.6 and EjapI-2.5 exhibited constant upregulation in all stresses analyzed, indicating that these may take an active role in regulating abiotic stresses. Our findings suggest the pivotal functions of EjLRR-RLK genes although additional research is still required. This research aims to provide useful information relating to the characterization of EjLRR-RLK genes and their responses to environmental stresses, establishing a concrete base for the following research.

14.
J Biol Chem ; : 107766, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276934

RESUMEN

Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e. g. at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels . The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.

15.
J Affect Disord ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278467

RESUMEN

OBJECTIVE: Bipolar disorder is a complex and severe mental illness characterised by manic and depressive episodes that can be triggered and exacerbated by psychosocial, environmental, and biological stressors. Genetic variations are a risk factor for bipolar disorder. However, the identification of the exact gene variants and genotypes remains complex. This study, therefore, aims to identify the potential association between genotypes of analysed single nucleotide polymorphisms and the presence of a stressor in bipolar disorder patients. METHOD: We analysed 114 single nucleotide polymorphisms (SNPs) from bipolar and stress-related candidate genes in 550 patients with bipolar disorders (60.36 % females and 39.64 % male). We compared SNPs of patients reporting the presence (40.73 %) or absence of stressors (59.27 %) before the first episode using the Persons Chi-square test and Bayes Factor t-test. The genotyping of 114 SNPs was done using TaqMan assays. Statistical analysis was done using Statistica 13.3 software (StatSoft Poland, Krakow, Poland), R programming, and G*Power statistics. RESULT: We found significant differences in genotype distribution (p < 0.05) in 6 polymorphisms (AVPRIB/rs28536160, FKBP4/rs2968909, ADRA2A/rs3750625, 5HTR2A/rs6311, 5HTR2A/rs6313, and GLCCI1/rs37972) when comparing BD patient with and without stressor with a small effect of d = 0.2. Of these, two gene variants (ADRA2A/rs3750625/AC and AVPRIB/rs28536160/CT) with minor alleles formed an association with the presence of a stressor prior to the disease onset and favoured the alternative hypothesis using Bayes Factor Analysis t-test for hypothesis testing. CONCLUSION: This study presents a novel association of ADRA2A/rs3750625/AC and AVPR1B/rs28536160/CT gene variants in stress-related bipolar disorder with the AC genotype of ADRA2A/rs3750625 constituting a risk genotype and CT of AVPR1B/rs28536160 constituting a protective genotype. However, further functional analysis is required to fully understand their clinical and biological significance and interaction.

16.
Int J Biol Macromol ; : 135669, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284473

RESUMEN

Phosphatidylethanolamine binding protein (PEBP) family plays important roles in multiple developmental processes in plants. In this study, a total of 11 PEBP gene family members were identified from the mango (Mangifera indica L.) genome, and these proteins were divided into three subfamilies based on their phylogenetic relationships: TERMINAL FLOWER 1 (TFL1)-like, MOTHER OF FT AND TFL (MFT)-like, and FLOWERING LOCUS T (FT)-like. Expression analysis revealed that MiFT1a, MiFT1b and MiFT2 were expressed mainly in leaves, whereas MiFT3 and MiFT4 were expressed mainly in embryos. The overexpression of MiFTs significantly promoted early flowering under both long- and short-day conditions. Interestingly, it still significantly promoted early flowering at 16 °C and 28 °C, with MiFT1a exhibiting the most significant, followed by MiFT1b and MiFT2. Additionally, the expression level of MiFT3 is related to the embryonic development of mango. Further studies revealed that overexpression of MiFT3 inhibited seed germination in transgenic Arabidopsis lines. In addition, the MiFT1a and MiFT1b transgenic lines did not respond to abiotic stress, while MiFT2, MiFT3 and MiFT4 enhanced resistance to salt or drought stress in Arabidopsis. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that MiFTs can interact with flower related and multiple stress proteins, such as bZIP protein (MiFD), 14-3-3 protein, zinc finger protein (MiZFP4), RING zinc-finger protein (MiRZFP34), and phosphatase 2C (MiPP2C25A and MiPP2C25B). These results indicate that FT subfamily not only regulates flowering but also participates in stress response, but also functions differently among these genes.

17.
aBIOTECH ; 5(3): 362-367, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279852

RESUMEN

Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.

18.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257804

RESUMEN

Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.

19.
Front Immunol ; 15: 1452172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257581

RESUMEN

Background: Glioma is a highly heterogeneous malignancy of the central nervous system. This heterogeneity is driven by various molecular processes, including neoplastic transformation, cell cycle dysregulation, and angiogenesis. Among these biomolecular events, inflammation and stress pathways in the development and driving factors of glioma heterogeneity have been reported. However, the mechanisms of glioma heterogeneity under stress response remain unclear, especially from a spatial aspect. Methods: This study employed single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore the impact of oxidative stress response genes in oligodendrocyte precursor cells (OPCs). Our analysis identified distinct pathways activated by oxidative stress in two different types of gliomas: high- and low- grade (HG and LG) gliomas. Results: In HG gliomas, oxidative stress induced a metabolic shift from oxidative phosphorylation to glycolysis, promoting cell survival by preventing apoptosis. This metabolic reprogramming was accompanied by epithelial-to-mesenchymal transition (EMT) and an upregulation of stress response genes. Furthermore, SCENIC (Single-Cell rEgulatory Network Inference and Clustering) analysis revealed that oxidative stress activated the AP1 transcription factor in HG gliomas, thereby enhancing tumor cell survival and proliferation. Conclusion: Our findings provide a novel perspective on the mechanisms of oxidative stress responses across various grades of gliomas. This insight enhances our comprehension of the evolutionary processes and heterogeneity within gliomas, potentially guiding future research and therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Glioma , Estrés Oxidativo , Análisis de la Célula Individual , Transcriptoma , Glioma/genética , Glioma/patología , Glioma/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Humanos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Células Precursoras de Oligodendrocitos/metabolismo , Perfilación de la Expresión Génica , Transducción de Señal , Proliferación Celular/genética , Línea Celular Tumoral , Redes Reguladoras de Genes
20.
J Affect Disord ; 367: 148-156, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233237

RESUMEN

BACKGROUND: Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed. METHODS: As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects. RESULTS: We observed significantly higher CACNA1C (p < 0.01) protein levels in subjects with BD. The risk single nucleotide polymorpshism (SNP) (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p = 0.013) or no copies (p = 0.009). We observed higher somatostatin (SST) (p < 0.003) protein levels and lower levels of the clock protein aryl hydrocarbon receptor nuclear translocator-like (ARTNL) (p < 0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p < 0.001) in BD. SST and period 2 (PER2) protein levels were associated with both alcohol dependence and lithium response. CONCLUSIONS: Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA