Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Health Serv Res ; 24(1): 841, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054502

RESUMEN

BACKGROUND: Primary Health Care (PHC) systems are pivotal in delivering essential health services during crises, as demonstrated during the COVID-19 pandemic. With varied global strategies to reinforce PHC systems, this scoping review consolidates these efforts, identifying and categorizing key resilience-building strategies. METHODS: Adopting Arksey and O'Malley's scoping review framework, this study synthesized literature across five databases and Google Scholar, encompassing studies up to December 31st, 2022. We focused on English and Persian studies that addressed interventions to strengthen PHC amidst COVID-19. Data were analyzed through thematic framework analysis employing MAXQDA 10 software. RESULTS: Our review encapsulated 167 studies from 48 countries, revealing 194 interventions to strengthen PHC resilience, categorized into governance and leadership, financing, workforce, infrastructures, information systems, and service delivery. Notable strategies included telemedicine, workforce training, psychological support, and enhanced health information systems. The diversity of the interventions reflects a robust global response, emphasizing the adaptability of strategies across different health systems. CONCLUSIONS: The study underscored the need for well-resourced, managed, and adaptable PHC systems, capable of maintaining continuity in health services during emergencies. The identified interventions suggested a roadmap for integrating resilience into PHC, essential for global health security. This collective knowledge offered a strategic framework to enhance PHC systems' readiness for future health challenges, contributing to the overall sustainability and effectiveness of global health systems.


Asunto(s)
COVID-19 , Pandemias , Atención Primaria de Salud , Humanos , COVID-19/epidemiología , Atención Primaria de Salud/organización & administración , SARS-CoV-2 , Telemedicina/organización & administración , Liderazgo , Atención a la Salud/organización & administración , Resiliencia Psicológica
2.
Sci Total Environ ; 766: 142608, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082049

RESUMEN

Pollution of freshwaters poses a major threat to water quality and human health and thus, nutrients have been targeted for mitigation. One such control measure is floating treatment wetlands (FTWs), which are designed to employ vigorous macrophytes above the water surface and extensive plant root system below the water surface to increase plant uptake of nutrients. The efficacy of FTWs in purifying different water systems has been widely studied and reviewed, but most studies have been performed in warm periods when FTW macrophytes are actively growing. In low-temperature conditions, the metabolic processes of macrophytes and microbial activity are usually weakened or reduced by the winter months and are not actively assimilating pollutants. These circumstances hamper the purification ability of FTWs to perform as designed. Furthermore, decayed macrophytes could release pollutants into the water column. Hence, this paper aimed to systematically summarize strategies for use of enhanced FTWs in eutrophic water improvement at low temperature and identify future directions to be addressed in intensifying FTW performance in low-temperature conditions. Low-temperature FTW show variable nutrient removal efficiencies ranging from 22% to 98%. Current amendments to enhance FTW purification performance, ranging from direct strategies for internal components to indirect enhancement of external operation environments encourage the FTW efficacy to some extent. However, the sustainability and sufficiency of water purification efficiency remain a great challenge. Keeping in mind the need for optimizing the FTW components and dealing with high organic and inorganic chemicals, future research should be carried out at the large field-scale and focus on macrophyte- benthos- microorganism synergistic enhancement, breeding of cold-tolerant macrophytes, and combination of FTWs with many strategies, as well as rational design and operational approaches under cold conditions.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Biodegradación Ambiental , Humanos , Nitrógeno/análisis , Fitomejoramiento , Temperatura , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA