Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Morphol Kinesiol ; 9(2)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651424

RESUMEN

The aim of this study was to verify the accuracy of predicting oxygen consumption (O2) in predominantly aerobic activities based on net heart rate (netHR), sex, and body mass index (BMI) in active adults. NetHR is the value of the difference between the resting HR (HRrest) and the average HR value obtained during a given session or period of physical activity. These activities must be continuous, submaximal, and of a stabilized intensity. The magnitude of the netHR depends mainly on the intensity of the exercise. The HR is measured in beats per minute (bpm). A total of 156 participants, 52 women and 104 men, between the ages of 18 and 81, had their netHR and net oxygen intake (netVO2) assessed. There were 79 participants in group 1 (prediction sample) (52 males and 27 females). There were 77 people in group 2 (validation sample) (52 males and 25 females). The results of the multiple linear regression showed that netVO2 (R2 = 85.2%, SEE = 3.38) could be significantly predicted by sex (p < 0.001), netHR (p < 0.001), and BMI (p < 0.001). The Bland-Altman plots satisfied the agreement requirements, and the comparison of the measured and estimated netVO2 revealed non-significant differences with a trivial effect size. We calculated the formula NetVO2 (mL/(kg·min)) = 16 + 3.67 (sex) + 0.27 (netHR) - 0.57 (BMI) to predict netVO2, where netVO2 is the amount of oxygen uptake (mL/(kg·min)) above the resting value, netHR is the heart rate (beats per minute) above the resting value measured during exercise, sex is equal to zero for women and one for men, and BMI is the body mass index. In addition, based on the knowledge of VO2, it was possible to estimate the energy expenditure from a particular training session, and to determine or prescribe the exercise intensity in MET (metabolic equivalent of task).

2.
J Funct Morphol Kinesiol ; 9(1)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38390930

RESUMEN

Cardiovascular capacity, expressed as maximal oxygen uptake (VO2max), is a strong predictor of health and fitness and is considered a key measure of physiological function in the healthy adult population. The aim of this study was to investigate the influence of the physical activity levels (PAlevel) of participants in the StepTest4all (validated protocol for the estimation of VO2max in adults). The sample consisted of 69 participants, including 27 women (age 21.7 ± 3.6 years; body mass = 63.5 ± 14.8 kg; height = 1.64 ± 0.06 m; body mass index = 23.7 ± 5.3 kg/m2) and 42 men (aged 21.7 ± 3.4 years; body mass = 72.0 ± 7.3 kg; height = 1.77 ± 0.07 m; body mass index = 23.1 ± 2.1 kg/m2). The participants were assigned to one of the two groups: (i) the VO2max prediction group and (ii) the prediction model validation group. In the multiple linear regression, the following predictors of VO2max remained significant: sex (p < 0.001), physical activity level (p = 0.014), and HRR60 (p = 0.020). The prediction equation (R2 = 74.0%, SEE = 4.78) showed a close and strong relationship between the measurements and can be expressed as follows: VO2max = 17.105 + 0.260·(HRR60) + 8.563·(sex) + 4.097·(PAlevel), in which HRR60 is the magnitude of the HR decrease (bpm) in one minute immediately after stopping the step, and sex: men = 1, women = 0, and PAlevel is level 1 (low), level 2 (moderate), and level 3 (high). The StepTest4all was shown to be a suitable method for estimating cardiovascular capacity, expressed as VO2max, in young adults. Retaining PAlevel as a significant predictor allows us to better individualize the participants' VO2max.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36141547

RESUMEN

BACKGROUND: Cardiovascular capacity, expressed as maximal oxygen uptake (VO2max), is a strong predictor of health and fitness and is considered a key measure of physiological function in the healthy adult population. The purpose of this study was to validate a specific step test (StepTest4all) as an adequate procedure to estimate cardiovascular capacity in young adults. METHODS: The sample was composed of 56 participants, including 19 women (aged 21.05 ± 2.39 years, body mass = 57.50 ± 6.64 kg, height = 1.62 ± 0.05 m, body mass index = 22.00 ± 2.92 kg/m2) and 37 men (aged 22.05 ± 3.14 years, body mass = 72.50 ± 7.73 kg, height = 1.76 ± 0.07 m, body mass index = 23.34 ± 2.17 kg/m2). Participants were included in one of the following groups: (i) the group used to predict the VO2max, and (ii) the group used to validate the prediction model. All participants performed the StepTest4all protocol. The step height and the intensity of the effort was determined individually. Heart rate and oxygen uptake were measured continuously during rest, effort, and recovery phases. The validation process included the following three stages: (i) mean data comparison, (ii) simple linear regression, and (iii) Bland-Altman analysis. RESULTS: The linear regression retained, as significant predictors of the VO2max, sex (p < 0.001) and heart rate recovery for one minute (p = 0.003). The prediction equation revealed a high relationship between measurements (R2 = 63.0%, SEE = 5.58). The validation procedure revealed non-significant differences (p > 0.05) between the measured and estimated maximal oxygen uptake, high relationship (R2 = 63.3%), and high agreement with Bland-Altman plots. Thus, VO2max can be estimated with the formula: VO2max = 22 + 0.3 · (HRR1min) + 12 · (sex), where HRR1min is the magnitude of the HR decrease (bpm) in one minute immediately after the step was stopped, and sex: men = 1, women = 0. CONCLUSIONS: The StepTest4all is an adequate procedure to estimate cardiovascular capacity, expressed as VO2max, in young adults. In addition, it is possible to determine the qualitative level of cardiovascular capacity from the heart rate recovery for one minute, more specifically, poor: <20, moderate: 20 to 34, good: 35 to 49, and excellent: ≥50. This procedure has the benefit of being simple to apply and can be used by everyone, even at home, without specialist supervision.


Asunto(s)
Prueba de Esfuerzo , Consumo de Oxígeno , Ejercicio Físico/fisiología , Prueba de Esfuerzo/métodos , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Oxígeno , Consumo de Oxígeno/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA