RESUMEN
We hypothesized that the age of loblolly pine stands influences soil methane (CH4) and nitrous oxide (N2O) emissions. This is a relevant topic to be studied in subtropical Brazil, where the pine plantation area is increasing considerably. We evaluated N2O and CH4 emissions for two years in a Ferralsol under loblolly pine (Pinus taeda L.) stands of 1, 9 and 18 year-olds and a native forest (NF). We calculated the net CO2eq emission by considering the N2O and CH4 emissions from soil and the carbon (C) accumulation as litter in the forest floor. The soil N2O emission reduced gradually over the loblolly pine cultivation years, whereas CH4 uptake rates showed no clear pattern. Soil N2O emission showed a positive relationship with soil temperature in NF, and with soil ammonium and nitrate intensities in the pine stands. Soil CH4 uptake was inversely related to water-filled pore space in the pine stands, but this relationship was not observed in NF. The soil CH4 uptake rate was 4.6 times higher (p < 0.10) in NF than the average uptake in loblolly pine stands. On the other hand, soil N2O emissions in 9 and 18-year-old stands were similar (p > 0.10) to those in NF (1.3 kg N ha-1 yr-1). Our results suggest that cultivation with loblolly pine for 18 years can reduce soil N2O emission, and the uptake of CH4 in this system offsets 17 % of N2O emissions. Furthermore, the C accumulation as litter in the forest floor of the mature pine stands (9- and 18-year-old) generated a net emission of -1.6 Mg CO2eq ha-1 yr-1, showing to be an expressive offsetting mechanism. Therefore, we conclude that aged loblolly forests can reach N2O emissions levels comparable to those of NF, and the C sequestration in these forests floor can significantly contribute to offset N2O emissions and act as sink for net atmospheric CO2eq.
RESUMEN
Forest soils are N2O sources and commonly act as CH4 sinks. This study evaluated the dynamics of the CH4 and N2O fluxes of soils under Eucalyptus plantations and native Cerrado vegetation, as well as possible interactions between environmental factors and fluxes. The study was carried out in the Distrito Federal, Brazil, during 26 months, in three areas: in two stands of the hybrid Eucalyptus urophylla × Eucalyptus grandis, planted in 2011 (E1), and in 2009 (E2) and native Cerrado vegetation (CE). Measurements to determine the fluxes in a closed static chamber were carried out from Oct 2013 to Nov 2015. Soil and climate factors were monitored. During the study period, the mean CH4 fluxes were 22.48, 8.38 and 1.31 μg CH4 m2 h1 and the mean N2O fluxes 5.45, 4.85 and 3.85 μg N2O m2 h1 from E1, E2 and CE, respectively. Seasonality affected plantations in the studied sites. Cumulative CH4 influxes were calculated (year-1: 1.86 to -0.63 kg ha1 yr1; year-2: 1.85 to 1.34 kg ha1 yr1). Cumulative N2O fluxes in the three sites were ≤ 0.85 kg ha1 yr1. The change in land use from Cerrado to Eucalyptus plantations did not significantly changed regarding greenhouse gases (GHG), compared to the native vegetation. Flux rates of both gases (N2O and CH4) were low. Temporal variations in GHG fluxes and different ages of the stands did not cause significant differences in cumulative annual fluxes.
Asunto(s)
Eucalyptus/química , Gases de Efecto Invernadero , Metano , Árboles/química , Óxido Nitroso , BrasilRESUMEN
Forest soils are N2O sources and commonly act as CH4 sinks. This study evaluated the dynamics of the CH4 and N2O fluxes of soils under Eucalyptus plantations and native Cerrado vegetation, as well as possible interactions between environmental factors and fluxes. The study was carried out in the Distrito Federal, Brazil, during 26 months, in three areas: in two stands of the hybrid Eucalyptus urophylla × Eucalyptus grandis, planted in 2011 (E1), and in 2009 (E2) and native Cerrado vegetation (CE). Measurements to determine the fluxes in a closed static chamber were carried out from Oct 2013 to Nov 2015. Soil and climate factors were monitored. During the study period, the mean CH4 fluxes were 22.48, 8.38 and 1.31 μg CH4 m2 h1 and the mean N2O fluxes 5.45, 4.85 and 3.85 μg N2O m2 h1 from E1, E2 and CE, respectively. Seasonality affected plantations in the studied sites. Cumulative CH4 influxes were calculated (year-1: 1.86 to -0.63 kg ha1 yr1; year-2: 1.85 to 1.34 kg ha1 yr1). Cumulative N2O fluxes in the three sites were ≤ 0.85 kg ha1 yr1. The change in land use from Cerrado to Eucalyptus plantations did not significantly changed regarding greenhouse gases (GHG), compared to the native vegetation. Flux rates of both gases (N2O and CH4) were low. Temporal variations in GHG fluxes and different ages of the stands did not cause significant differences in cumulative annual fluxes.(AU)