Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1338751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721605

RESUMEN

Clostridium sporogenes is an anaerobic spore-forming bacterium genetically related to Clostridium botulinum but lacks toxin genes. The sporulation mechanism and spore structures of anaerobic bacteria, including C. sporogenes, have not been comprehensively analyzed. Based on 16S rRNA gene analysis, it has been determined that C. sporogenes NBRC 14293 belongs to C. botulinum Group I. Moreover, SpoIVA is highly conserved in Bacillus and Clostridium species. Therefore, the aim of the present study is to investigate the mechanism of spore formation in C. sporogenes by performing a functional analysis of spoIVA encoding SpoIVA, a protein involved in the early development of the spore coat and cortex in Bacillus subtilis. Inactivation of spoIVA in C. sporogenes resulted in the loss of resistance of sporulating cells to lysozyme and heat treatments. Phase-contrast microscopy indicated that the inactivation of spoIVA caused the development of abnormal forespores and production of only a few immature spores. In the spoIVA mutant, abnormal swirl structures were detected in the mother cell using both phase-contrast and transmission electron microscopy. These swirls were stained with auramine O, pararosaniline hydrochloride, and 2-(4-aminophenyl)benzothiazole to examine the surface of mature spores of the wild-type strain. We found that the spore coat and exosporium proteins were misassembled and that they accumulated in the mother cells of the mutant. The results of this study indicate that SpoIVA is a spore morphogenetic protein, providing novel insights into spore morphogenesis in C. sporogenes.

2.
Int J Food Microbiol ; 418: 110709, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38663147

RESUMEN

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.


Asunto(s)
Bacillus cereus , Calor , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Bacillus cereus/genética , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Termotolerancia , Adaptación Fisiológica , Secuenciación Completa del Genoma , Microbiología de Alimentos , Genoma Bacteriano , Evolución Biológica
3.
Biomolecules ; 14(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540787

RESUMEN

Laccases are industrially relevant enzymes that have gained great biotechnological importance. To date, most are of fungal and mesophilic origin; however, enzymes from extremophiles possess an even greater potential to withstand industrial conditions. In this study, we evaluate the potential of a recombinant spore-coat laccase from the thermoalkaliphilic bacterium Bacillus sp. FNT (FNTL) to biodegrade antibiotics from the tetracycline, ß-lactams, and fluoroquinolone families. This extremozyme was previously characterized as being thermostable and highly active in a wide range of temperatures (20-90 °C) and very versatile towards several structurally different substrates, including recalcitrant environmental pollutants such as PAHs and synthetic dyes. First, molecular docking analyses were employed for initial ligand affinity screening in the modeled active site of FNTL. Then, the in silico findings were experimentally tested with four highly consumed antibiotics, representatives of each family: tetracycline, oxytetracycline, amoxicillin, and ciprofloxacin. HPLC results indicate that FNTL with help of the natural redox mediator acetosyringone, can efficiently biodegrade 91, 90, and 82% of tetracycline (0.5 mg mL-1) in 24 h at 40, 30, and 20 °C, respectively, with no apparent ecotoxicity of the products on E. coli and B. subtilis. These results complement our previous studies, highlighting the potential of this extremozyme for application in wastewater bioremediation.


Asunto(s)
Bacillus , Lacasa , Humanos , Lacasa/metabolismo , Bacillus/metabolismo , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Biodegradación Ambiental , Simulación del Acoplamiento Molecular , Tetraciclina
4.
Adv Exp Med Biol ; 1435: 273-314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38175480

RESUMEN

Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.


Asunto(s)
Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Morfogénesis , Oxígeno , Examen Físico
5.
Curr Fungal Infect Rep ; : 1-10, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37360854

RESUMEN

Purpose of Review: Invasive mucormycosis (IM), caused by fungi of the order Mucorales, is one of the deadliest fungal infection among hematologic cancer patients. Its incidence is also increasingly reported in immunocompetent individuals, notably with the COVID-19 pandemic. Therefore, there is an urgent need for novel diagnostic and therapeutic approaches of IM. This review discusses the current advances in this field. Recent Findings: Early diagnosis of IM is crucial and can be improved by Mucorales-specific PCR and development of lateral-flow immunoassays for specific antigen detection. The spore coat proteins (CotH) are essential for virulence of the Mucorales and may represent a target for novel antifungal therapies. Adjuvant therapies boosting the immune response, such as interferon-γ, anti-PDR1 or fungal-specific chimeric antigen receptor (CAR) T-cells, are also considered. Summary: The most promising perspectives for improved management of IM consist of a multilayered approach targeting both the pathogen and the host immune system.

6.
Protein Expr Purif ; 210: 106323, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331410

RESUMEN

Anaerobic fungi (Neocallimastigomycetes) found in the guts of herbivores are biomass deconstruction specialists with a remarkable ability to extract sugars from recalcitrant plant material. Anaerobic fungi, as well as many species of anaerobic bacteria, deploy multi-enzyme complexes called cellulosomes, which modularly tether together hydrolytic enzymes, to accelerate biomass hydrolysis. While the majority of genomically encoded cellulosomal genes in Neocallimastigomycetes are biomass degrading enzymes, the second largest family of cellulosomal genes encode spore coat CotH domains, whose contribution to fungal cellulosome and/or cellular function is unknown. Structural bioinformatics of CotH proteins from the anaerobic fungus Piromyces finnis shows anaerobic fungal CotH domains conserve key ATP and Mg2+ binding motifs from bacterial Bacillus CotH proteins known to act as protein kinases. Experimental characterization further demonstrates ATP hydrolysis activity in the presence and absence of substrate from two cellulosomal P. finnis CotH proteins when recombinantly produced in E. coli. These results present foundational evidence for CotH activity in anaerobic fungi and provide a path towards elucidating the functional contribution of this protein family to fungal cellulosome assembly and activity.


Asunto(s)
Celulosomas , Celulosomas/genética , Celulosomas/química , Celulosomas/metabolismo , Escherichia coli/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Esporas/metabolismo , Adenosina Trifosfato/metabolismo , Hongos
7.
mBio ; 14(1): e0338622, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625576

RESUMEN

Mucormycosis is an invasive fungal infection caused by certain members of the fungal order of Mucorales. The species most frequently identified as the etiological agents of mucormycosis belong to the genera Rhizopus, Lichtheimia, and Mucor. The frequency of systemic mucormycosis has been increasing, mainly because of increasing numbers of susceptible patients. Furthermore, Mucorales display intrinsic resistance to the majority of routinely used antifungal agents (e.g., echinocandins and short-tailed azoles), which limits the number of possible therapeutic options. All the above-mentioned issues urge the improvement of molecular identification methods and the discovery of new antifungal targets and strategies. Spore coat proteins (CotH) constitute a kinase family present in many pathogenic bacteria and fungi and participate in the spore formation in these organisms. Moreover, some of them can act as virulence factors being receptors of the human GRP78 protein during Rhizopus delemar-induced mucormycosis. We identified 17 cotH-like genes in the Mucor lusitanicus genome database. Successful disruption of five cotH genes in Mucor was performed using the CRISPR-Cas9 system. The CotH3 and CotH4 proteins play a role in adaptation to different temperatures as well as in developing the cell wall structure. We also show CotH4 protein is involved in spore wall formation by affecting the total chitin content and, thus, the composition of the spore wall. The role of CotH3 and CotH4 proteins in virulence was confirmed in two invertebrate models and a diabetic ketoacidosis (DKA) mouse model. IMPORTANCE Current treatment options for mucormycosis are inadequate, resulting in high mortality rates, especially among immunosuppressed patients. The development of novel therapies for mucormycosis has been hampered by lack of understanding of the pathogenetic mechanisms. The importance of the cell surface CotH proteins in the pathogenesis of Rhizopus-mediated mucormycosis has been recently described. However, the contribution of this family of proteins to the virulence of other mucoralean fungi and their functionality in vital processes remain undefined. Through the use of the CRISPR-Case9 gene disruption system, we demonstrate the importance of several of the CotH proteins to the virulence of Mucor lusitanicus by using three infection models. We also report on the importance of one of these proteins, CotH4, to spore wall formation by affecting chitin content. Therefore, our studies extend the importance of CotH proteins to Mucor and identify the mechanism by which one of the CotH proteins contributes to the development of a normal fungal cell wall, thereby indicating that this family of proteins can be targeted for future development of novel therapeutic strategies of mucormycosis.


Asunto(s)
Mucorales , Mucormicosis , Animales , Ratones , Humanos , Mucor/genética , Mucormicosis/microbiología , Virulencia/genética , Mucorales/genética , Esporas
8.
mBio ; 13(6): e0276022, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36354330

RESUMEN

Proteins and glycoproteins that form the surface layers of the Bacillus spore assemble into semipermeable arrays that surround and protect the spore cytoplasm. Such layers, acting like molecular sieves, exclude large molecules but allow small nutrients (germinants) to penetrate. We report that CotG, a modular and abundant component of the Bacillus subtilis spore coat, controls spore permeability through its central region, formed by positively charged tandem repeats. These repeats act as spacers between the N and C termini of the protein, which are responsible for the interaction of CotG with at least one other coat protein. The deletion but not the replacement of the central repeats with differently charged repeats affects the spore resistance to lysozyme and the efficiency of germination-probably by reducing the coat permeability to external molecules. The presence of central repeats is a common feature of the CotG-like proteins present in most Bacillus species, and such a wide distribution of this protein family is suggestive of a relevant role for the structure and function of the Bacillus spore. IMPORTANCE Bacterial spores are quiescent cells extremely resistant to a variety of unphysiological conditions, including the presence of lytic enzymes. Such resistance is also due to the limited permeability of the spore surface, which does not allow lytic enzymes to reach the spore interior. This article proposes that the spore permeability in B. subtilis is mediated by CotG, a modular protein formed by a central region of repeats of positively charged amino acid acting as a "spacer" between the N and C termini. These, in turn, interact with other coat proteins, generating a protein layer whose permeability to external molecules is controlled by the distance between the N and C termini of CotG. This working model is most likely expandable to most sporeformers of the Bacillus genus, since they all have CotG-like proteins, not homologous to CotG of B. subtilis but similarly characterized by central repeats.


Asunto(s)
Bacillus subtilis , Bacillus , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus/metabolismo , Esporas Bacterianas/metabolismo , Permeabilidad
9.
Microorganisms ; 10(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36296193

RESUMEN

Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores.

10.
J Bacteriol ; 204(6): e0007922, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638784

RESUMEN

The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.


Asunto(s)
Bacillus , Esporas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Clostridium/genética , Firmicutes , Humanos , Filogenia , Esporas Bacterianas/genética
11.
Microorganisms ; 9(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573199

RESUMEN

Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.

12.
Colloids Surf B Biointerfaces ; 197: 111425, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33099149

RESUMEN

Bacillus subtilis spore coat is a bacterial proteinaceous structure with amazing characteristics of self-organization, unique resiliency, toughness and flexibility in the same time. The spore coat represents a complex multilayered protein structure which is composed of over 80 coat proteins. Some of these proteins form two dimensional crystal structures who's low resolution ternary structure as was determined by electron microscopy. However, there are no 3D structure of these proteins known, due to a problem of preparing 3D crystals which could be analyzed by synchrotron X-ray sources. In the present study, Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) was applied to investigate a diffraction pattern of CotY 2D crystals formed on Langmuir monolayer films. We observed two distinct diffraction rings and their position corresponds to a structure with the lattice spacing of 10.6 Å and 5.0 Å, respectively. Obtaining diffractions of 2D crystals pave the way to determination of 3D structure of coat proteins by using strong X-ray sources.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Proteínas Bacterianas , Pared Celular , Microscopía Electrónica
13.
Int J Biol Macromol ; 170: 298-306, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33347931

RESUMEN

Laccases are enzymes able to catalyze the oxidation of a wide array of phenolic and non-phenolic compounds using oxygen as co-substrate and releasing water as by-product. They are well known to have wide substrate specificity and in recent years, have gained great biotechnological importance. To date, most well studied laccases are from fungal and mesophilic origin, however, enzymes from extremophiles possess an even greater potential to withstand the extreme conditions present in many industrial processes. This research work presents the heterologous production and characterization of a novel laccase from a thermoalkaliphilic bacterium isolated from a hot spring in a geothermal site. This recombinant enzyme exhibits remarkably high specific activity (>450,000 U/mg) at 70 °C, pH 6.0, using syringaldazine substrate, it is active in a wide range of temperature (20-90 °C) and maintains over 60% of its activity after 2 h at 60 °C. Furthermore, this novel spore-coat laccase is able to biodecolorize eight structurally different recalcitrant synthetic dyes (Congo red, methyl orange, methyl red, Coomassie brilliant blue R250, bromophenol blue, malachite green, crystal violet and Remazol brilliant blue R), in just 30 min at 40 °C in the presence of the natural redox mediator acetosyringone.


Asunto(s)
Colorantes/química , Lacasa/química , Lacasa/aislamiento & purificación , Antraquinonas/química , Compuestos Azo/química , Bacillus/enzimología , Bacillus/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Lacasa/metabolismo , Oxidación-Reducción , Esporas/metabolismo , Aguas Residuales/química
14.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33052805

RESUMEN

Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/genética , Bacillus subtilis/metabolismo , Evolución Biológica , Genes Bacterianos/genética , Genoma Bacteriano/genética , Filogenia
15.
Microbiologyopen ; 9(11): e1117, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32996289

RESUMEN

Alkaline glutaraldehyde (GTA) is a high-level chemical disinfectant/sterilant and has a broad microbial kill spectrum. The precise antimicrobial mechanism of GTA remains debated. GTA kill times are extremely variable across different organisms, illustrating the need for a better understanding of GTA kill mechanisms related to different organisms. A commonly proposed GTA kill mechanism suggests that it works by cross-linking accessible primary amines on important surface proteins. If true, the antimicrobial activity of GTA may directly correlate to the number of these available functional groups. Bacillus species form highly resistant bacterial endospores that are commonly used as one of the most stringent test organisms for disinfection and sterilization. In this study, we compared the log reduction times of alkaline GTA on spores from 4 Bacillus species to fluorescent profiles generated using Alexa Fluor™ amine-reactive dyes. GTA kill times were also compared to mean spore coat thicknesses as measured with scanning electron microscopy (SEM). Fluorescence values generated from bound amine-reactive dye showed a strong, positive correlation to GTA susceptibility, as measured by GTA 6-log10 reduction times. Spore coat thickness also showed a strong, positive correlation to reduction time values. Results support the hypothesis that GTA kill times are directly related to the number of available primary amines on bacterial endospores. Results also indicated that the killing efficacy of GTA may be influenced by its ability to penetrate the spore coat to reach additional targets, suggesting that damaging important biomolecules beyond surface proteins may be involved in GTA killing mechanisms.


Asunto(s)
Aminas/química , Bacillus/efectos de los fármacos , Bacillus/fisiología , Desinfectantes/farmacología , Glutaral/farmacología , Esporas Bacterianas/efectos de los fármacos , Bacillus/clasificación , Pared Celular/metabolismo , Desinfección , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Esporas Bacterianas/química , Esporas Bacterianas/fisiología
16.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817091

RESUMEN

The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation.IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Clostridioides difficile/fisiología , Esporas Bacterianas/enzimología , Adenosina Trifosfato/metabolismo , Clostridioides difficile/enzimología
17.
Biol Chem ; 401(12): 1375-1387, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32769218

RESUMEN

In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.


Asunto(s)
Membrana Celular/metabolismo , Myxococcus xanthus/química , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Membrana Celular/química , Myxococcus xanthus/citología , Myxococcus xanthus/metabolismo , Polisacáridos Bacterianos/química
18.
Mol Microbiol ; 114(6): 934-951, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32592201

RESUMEN

Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Esporas Bacterianas/fisiología , Secuencia de Aminoácidos , Bacillus subtilis/citología , Pared Celular/genética , Pared Celular/metabolismo , Fosforilación , Eliminación de Secuencia , Esporas Bacterianas/citología
19.
mSystems ; 5(3)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398277

RESUMEN

Probiotic Bacillales are effective in controlling pathogens. Live probiotic bacteria improve the composition of the gastrointestinal microbiota, leading to a reduction in pathogen colonization. However, it remains largely unknown how probiotics regulate the host's immunologic responses and protect the host from parasitic infection. In this study, we addressed whether Bacillales were effective against Haemonchus contortus, a parasitic nematode that infects small ruminants worldwide. Using 16S rRNA sequencing, we found that Bacillales were largely depleted in the abomasal microbiota of sheep infected with H. contortus We constructed a recombinant Bacillus subtilis named rBS CotB-HcG that express the glyceraldehyde-3-phosphate dehydrogenase of H. contortus (HcGAPDH) on its spore surface using the Bacillus subtilis spore coat protein B (CotB) as a carrier. Mice receiving rBS CotB-HcG orally showed strong Th1-dominated immune responses. More importantly, sheep administered BS CotB-HcG per os showed increasing proliferation of the peripheral blood mononucleates, elevated anti-HcGAPDH IgG in sera, and higher anti-HcGAPDH sIgA in the intestinal mucus than the control sheep. The average weight gain of H. contortus-infected sheep treated with rBS CotB-HcG (Hc+rBS CotB-HcG ) was 48.73% greater than that of unvaccinated sheep. Furthermore, these Hc+rBS CotB-HcG sheep had fewer eggs per gram of feces by 84.1% and adult worms by 71.5%. They also demonstrated greatly lessened abomasal damage by H. contortus with an abundance of probiotic species in the abomasal microbiota. Collectively, our data unequivocally demonstrate the protective roles of CotB-HcGAPDH-expressing B. subtilis spores in against H. contortus infection and showed great potential of using probiotic-based strategy in controlling parasitic nematodes of socioeconomic importance in general.IMPORTANCE Initial analyses of the abomasal microbiota of sheep using 16S rRNA sequencing suggested that probiotic bacteria played a protective role in against H. contortus infection. A recombinant Bacillus subtilis expressing a fusion protein CotB-HcGAPDH on its spore's surface induced strong Th1 immune response in a murine model. The same probiotic recombinant, upon only one oral application, protected sheep against H. contortus infection by reducing egg shedding and decreasing adult worm loads of the parasite and increasing body weight gain of infected sheep. Both Th1 and Th2 immune responses were evident in these immunized sheep.

20.
J Bacteriol ; 201(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235516

RESUMEN

Polysaccharides (PS) decorate the surface of dormant endospores (spores). In the model organism for sporulation, Bacillus subtilis, the composition of the spore PS is not known in detail. Here, we have assessed how PS synthesis enzymes produced during the late stages of sporulation affect spore surface properties. Using four methods, bacterial adhesion to hydrocarbons (BATH) assays, India ink staining, transmission electron microscopy (TEM) with ruthenium red staining, and scanning electron microscopy (SEM), we characterized the contributions of four sporulation gene clusters, spsABCDEFGHIJKL, yfnHGF-yfnED, ytdA-ytcABC, and cgeAB-cgeCDE, on the morphology and properties of the crust, the outermost spore layer. Our results show that all mutations in the sps operon result in the production of spores that are more hydrophobic and lack a visible crust, presumably because of reduced PS deposition, while mutations in cgeD and the yfnH-D cluster noticeably expand the PS layer. In addition, yfnH-D mutant spores exhibit a crust with an unusual weblike morphology. The hydrophobic phenotype from sps mutant spores was partially rescued by a second mutation inactivating any gene in the yfnHGF operon. While spsI, yfnH, and ytdA are paralogous genes, all encoding glucose-1-phosphate nucleotidyltransferases, each paralog appears to contribute in a distinct manner to the spore PS. Our data are consistent with the possibility that each gene cluster is responsible for the production of its own respective deoxyhexose. In summary, we found that disruptions to the PS layer modify spore surface hydrophobicity and that there are multiple saccharide synthesis pathways involved in spore surface properties.IMPORTANCE Many bacteria are characterized by their ability to form highly resistant spores. The dormant spore state allows these species to survive even the harshest treatments with antimicrobial agents. Spore surface properties are particularly relevant because they influence spore dispersal in various habitats from natural to human-made environments. The spore surface in Bacillus subtilis (crust) is composed of a combination of proteins and polysaccharides. By inactivating the enzymes responsible for the synthesis of spore polysaccharides, we can assess how spore surface properties such as hydrophobicity are modulated by the addition of specific carbohydrates. Our findings indicate that several sporulation gene clusters are responsible for the assembly and allocation of surface polysaccharides. Similar mechanisms could be modulating the dispersal of infectious spore-forming bacteria.


Asunto(s)
Bacillus subtilis/fisiología , Mutación , Operón , Polisacáridos/metabolismo , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucosa/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidrocarburos/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Familia de Multigenes , Esporas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA