Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893428

RESUMEN

The spin-lattice relaxation rates (R1) of fluorine nuclei in perfluorosulfonic acid (PFSA) ionomer membranes and their precursor solid perfluorosulfonyl fluoride (PFSF) were measured by fast field-cycling (FFC) NMR relaxometry. The XRD profiles of PFSA and PFSF are similar and show a characteristic peak, indicating the alignment of main chains. While the SAXS profiles of the PFSA membranes show two peaks, those of the solid PFSF lack the ionomer peak which is characteristic of hydrophilic side chains in the PFSA ionomer membranes. The Larmor frequency dependence of R1 obeys power law and the indices are dependent on the sample and temperature. The indices of the PFSA membranes change from -1/2 to -1 along with the Larmor frequency and temperature dependence decrease, which is consistent with the generalized defect diffusion model. Estimated activation energies are in good agreement with those obtained from dynamical mechanical analysis and dielectric spectroscopy, indicating the segmental motion of the backbones as the common origin of these observations. On the other hand, the index changes to -3/4 in the case of the PFSFs, which has been predicted by the reptation model.

2.
Materials (Basel) ; 17(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38673228

RESUMEN

Diamonds produced using chemical vapor deposition (CVD) have found many applications in various fields of science and technology. Many applications involve polycrystalline CVD diamond films of micron thicknesses. However, a variety of optical, thermal, mechanical, and radiation sensing applications require more bulky CVD diamond samples. We report the results of a magnetic resonance and structural study of a thick, sizable polycrystalline CVD diamond disc, both as-prepared and treated with e-beam irradiation/high-temperature annealing, as well as gamma irradiation. The combination of various magnetic resonance techniques reveals and enables the attribution of a plentiful collection of paramagnetic defects of doublet and triplet spin origin. Analysis of spectra, electron, and nuclear spin relaxation, as well as nuclear spin diffusion, supports the conclusion of significant macro- and micro-inhomogeneities in the distribution of nitrogen-related defects.

3.
Mol Imaging Biol ; 26(3): 373-381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548994

RESUMEN

Molecular oxygen and its thermodynamic transformation drive nearly all life processes. Quantitative measurement and imaging of oxygen in living systems is of fundamental importance for the study of life processes and their aberrations-disease- many of which are affected by hypoxia, or low levels of oxygen. Cancer is among the disease processes profoundly affected by hypoxia. Electron paramagnetic resonance has been shown to provide remarkably accurate images of normal and cancerous tissue. In this review, we emphasize the reactivity of molecular oxygen particularly highlighting the metabolic processes of living systems to store free energy in the reactants. The history of hypoxic resistance of living systems to cytotoxic therapy, particularly radiation therapy is also reviewed. The measurement and imaging of molecular oxygen with pulse spin lattice relaxation (SLR) electron paramagnetic resonance (EPR) is reviewed briefly. This emphasizes the advantages of the spin lattice relaxation based measurement paradigm to reduce the sensitivity of the measurement to the presence of the oxygen sensing probe itself. The involvement of a novel small mammal external beam radiation delivery system is described. This enables an experimental paradigm based on control by radiation of the last resistant clonogen. This is much more specific for tumor cure than growth delay assays which primarily reflects control of tumor cells most sensitive to therapy.


Asunto(s)
Oxígeno , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno/metabolismo , Oxígeno/química , Animales , Humanos , Mamíferos/metabolismo , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo
4.
Chemistry ; 30(3): e202303082, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37880199

RESUMEN

Molecule-based magnetic materials are useful candidates as the spin qubit due to their long coherence time and high designability. The anisotropy of the g-values of the metal complexes can be utilized to access the individual spin of the metal complexes, making it possible to achieve the scalable molecular spin qubit. For this goal, it is important to evaluate the effect of g-value anisotropy on the magnetic relaxation behaviour. This study reports the slow magnetic relaxation behaviour of chromium nitride (CrN2+ ) porphyrinato complex (1), which is structurally and magnetically similar with the vanadyl (VO2+ ) porphyrinato complex (2) which is known as the excellent spin qubit. Detailed analyses for vibrational and dynamical magnetism of 1 and 2 revealed that g-value anisotropy accelerates magnetic relaxations greater than the internal magnetic field from nuclear spin does. These results provide a design criterion for construction of multiple spin qubit based on g-tensor engineering.

5.
Med Biol Eng Comput ; 62(3): 941-954, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100039

RESUMEN

PURPOSE: The extraction of information from images provided by medical imaging systems may be employed to obtain the specific objectives in the various fields. The quantity of signal to noise ratio (SNR) plays a crucial role in displaying the image details. The higher the SNR value, the more the information is available. METHODS: In this study, a new function has been formulated using the appropriate suggestions on convolutional combination of the longitudinal and transverse magnetization components related to the relaxation times of T1 and T2 in MRI, where by introducing the distinct index on the maximum value of this function, the new maps are constructed toward the best SNR. Proposed functions were analytically simulated using Matlab software and evaluated with respect to various relaxation times. This proposed method can be applied to any medical images. For instance, the T1- and T2-weighted images of the breast indicated in the reference [35] were selected for modelling and construction of the full width at x maximum (FWxM) map at the different values of x-parameter from 0.01 to 0.955 at 0.035 and 0.015 intervals. The range of x-parameter is between zero and one. To determine the maximum value of the derived SNR, these intervals have been first chosen arbitrarily. However, the smaller this interval, the more precise the value of the x-parameter at which the signal to noise is maximum. RESULTS: The results showed that at an index value of x = 0.325, the new map of FWxM (0.325) will be constructed with a maximum derived SNR of 22.7 compared to the SNR values of T1- and T2-maps by 14.53 and 17.47, respectively. CONCLUSION: By convolving two orthogonal magnetization vectors, the qualified images with higher new SNR were created, which included the image with the best SNR. In other words, to optimize the adoption of MRI technique and enable the possibility of wider use, an optimal and cost-effective examination has been suggested. Our proposal aims to shorten the MRI examination to further reduce interpretation times while maintaining primary sensitivity. SIGNIFICANCE: Our findings may help to quantitatively identify the primary sources of each type of solid and sequential cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Relación Señal-Ruido , Neoplasias de la Mama/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373520

RESUMEN

Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.


Asunto(s)
Electrólitos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Fenómenos Físicos , Electrólitos/química , Iones , Polímeros/química
7.
J Magn Reson ; 350: 107434, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37080070

RESUMEN

The aim of this work is to investigate the nanostructures of nanoporous materials by studying the anisotropy of the nuclear spin-spin and spin-lattice relaxations of the guest molecules trapped in the pores. The nuclear magnetic resonance (NMR) data are analyzed in the framework of the theory of the nuclear relaxation dominated by the dipole-dipole interactions in gas or liquid species contained in nanopores. A distinctive feature of this theory is the establishment of a relationship between the degree of orientation ordering of nanopores in the host matrix and their characteristic volume and the anisotropy of the NMR relaxation times. In this work the complex experimental and theoretical approach was applied to study the nanostructure of hydrogenated amorphous silicon (a-Si:H) films. A feature of this study is the simultaneous investigation of the three (T1, T1ρ, and T2) NMR relaxation times, for the same sample. This allows us to determine not only the degree of orientation ordering of nanopores but also to estimate their size (∼1 nm) and correlation times of the nanopore fluctuations. The obtained results demonstrate that the developed approach is effective in studying details of nanostructure of different nanoporous materials.

8.
Chemistry ; 29(38): e202300215, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946535

RESUMEN

Sensitivity in FlowNMR spectroscopy for reaction monitoring often suffers from low levels of pre-magnetisation due to limited residence times of the sample in the magnetic field. While this in-flow effect is tolerable for high sensitivity nuclei such as 1 H and 19 F, it significantly reduces the signal-to-noise ratio in 31 P and 13 C spectra, making FlowNMR impractical for low sensititvity nuclei at low concentrations. Paramagnetic relaxation agents (PRAs), which enhance polarisation and spin-lattice relaxation, could eliminate the adverse in-flow effect and improve the signal-to-noise ratio. Herein, [Co(acac)3 ], [Mn(acac)3 ], [Fe(acac)3 ], [Cr(acac)3 ], [Ni(acac)2 ]3, [Gd(tmhd)3 ] and [Cr(tmhd)3 ] are investigated for their effectiveness in improving signal intensity per unit time in FlowNMR applications under the additional constraint of chemical inertness towards catalytically active transition metal complexes. High-spin Cr(III) acetylacetonates emerged as the most effective compounds, successfully reducing 31 P T1 values four- to five-fold at PRA concentrations as low as 10 mM without causing adverse line broadening. Whereas [Cr(acac)3 ] showed signs of chemical reactivity with a mixture of triphenylphosphine, triphenylphosphine oxide and triphenylphosphate over the course of several hours at 80° C, the bulkier [Cr(tmhd)3 ] was stable and equally effective as a PRA under these conditions. Compatibility with a range of representative transition metal complexes often used in homogeneous catalysis has been investigated, and application of [Cr(tmhd)3 ] in significantly improving 1 H and 31 P{1 H} FlowNMR data quality in a Rh-catalysed hydroformylation reaction has been demonstrated. With the PRA added, 13 C relaxation times were reduced more than six-fold, allowing quantitative reaction monitoring of substrate consumption and product formation by 13 C{1 H} FlowNMR spectroscopy at natural abundance.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Complejos de Coordinación/química , Espectroscopía de Resonancia Magnética/métodos
9.
Magn Reson Med ; 89(1): 370-383, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36094730

RESUMEN

PURPOSE: Deciphering salient features of biological tissue cellular microstructure in health and diseases is an ultimate goal of MRI. While most MRI approaches are based on studying MR properties of tissue "free" water indirectly affected by tissue microstructure, other approaches, such as magnetization transfer (MT), directly target signals from tissue-forming macromolecules. However, despite three-decades of successful applications, relationships between MT measurements and tissue microstructure remain elusive, hampering interpretation of experimental results. The goal of this paper is to develop microscopic theory connecting the structure of cellular and myelin membranes to their MR properties. THEORY AND METHODS: Herein we introduce a lateral diffusion model (LDM) that explains the T2 (spin-spin) and T1 (spin-lattice) MRI relaxation properties of the macromolecular-bound protons by their dipole-dipole interaction modulated by the lateral diffusion of long lipid molecules forming cellular and myelin membranes. RESULTS: LDM predicts anisotropic T1 and T2 relaxation of membrane-bound protons. Moreover, their T2 relaxation cannot be described in terms of a standard R2  = 1/T2 relaxation rate parameter, but rather by a relaxation rate function R2 (t) that depends on time t after RF excitation, having, in the main approximation, a logarithmic behavior: R2 (t) ∼ lnt. This anisotropic non-linear relaxation leads to an absorption lineshape that is different from Super-Lorentzian traditionally used in interpreting MT experiments. CONCLUSION: LDM-derived analytical equations connect the membrane-bound protons T1 and T2 relaxation with dynamic distances between protons in neighboring membrane-forming lipid molecules and their lateral diffusion. This sheds new light on relationships between MT parameters and microstructure of cellular and myelin membranes.


Asunto(s)
Vaina de Mielina , Protones , Difusión , Imagen por Resonancia Magnética/métodos , Sustancias Macromoleculares , Lípidos
10.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202475

RESUMEN

In a previous investigation, the authors proposed nitrogen as a possible candidate for exploiting the donor spin in silicon quantum devices. This system is characterized by a ground state deeper than the other group V impurities in silicon, offering less stringent requirements on the device temperature necessary to access the unionized state. The nitrogen donor is slightly displaced from the substitutional site, and upon heating, the system undergoes a motional transition. In the present article, we show the results from our investigation on the spin-relaxation times in natSi and 28Si substrates and discuss the motional effects on relaxation. The stretched exponential relaxation observed is interpreted as a distribution of spin-lattice relaxation times, whose origin is also discussed. This information greatly contributes to the assessment of a nitrogen-doped silicon system as a potential candidate for quantum devices working at temperatures higher than those required for other group V donors in silicon.

11.
J Magn Reson ; 345: 107327, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36410061

RESUMEN

The common approach to background removal in double electron-electron resonance (DEER) measurements on frozen solutions with a three-dimensional homogeneous distribution of doubly labeled biomolecules is to fit the background to an exponential decay function. Excluded volume effects or distribution in a dimension lower than three, such as proteins in a membrane, can lead to a stretched exponential decay. In this work, we show that in cases of spin labels with short spin-lattice relaxation time, up to an order of magnitude longer than the DEER trace length, relevant for metal-based spin labels, spin flips that take place during the DEER evolution time affect the background decay shape. This was demonstrated using a series of temperature-dependent DEER measurements on frozen solutions of a nitroxide radical, a Gd(III) complex, Cu(II) ions, and a bis-Gd(III) model complex. As expected, the background decay was exponential for the nitroxide, whereas deviations were noted for Gd(III) and Cu(II). Based on the theoretical approach of Keller et al. (Phys. Chem. Chem. Phys. 21 (2019) 8228-8245), which addresses the effect of spin-lattice relaxation-induced spin flips during the evolution time, we show that the background decay can be fitted to an exponent including a linear and quadratic term in t, which is the position of the pump pulse. Analysis of the data in terms of the probability of spontaneous spin flips induced by spin-lattice relaxation showed that this approach worked well for the high temperature range studied for Gd(III) and Cu(II). At the low temperature range, the spin flips that occured during the DEER evolution time for Gd(III) exceeded the measured spin-lattice relaxation rate and include contributions from spin flips due to another mechanisms, most likely nuclear spin diffusion.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón
12.
Membranes (Basel) ; 12(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36295720

RESUMEN

The spin-lattice relaxation rate (T1-1) of lipid spin labels obtained from saturation recovery EPR measurements in deoxygenated membranes depends primarily on the rate of the rotational diffusion of the nitroxide moiety within the lipid bilayer. It has been shown that T1-1 also can be used as a qualitative convenient measure of membrane fluidity that reflects local membrane dynamics; however, the relation between T1-1 and rotational diffusion coefficients was not provided. In this study, using data previously presented for continuous wave and saturation recovery EPR measurements of phospholipid analog spin labels, one-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine in 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/cholesterol membranes, we show that measured T1-1 values are linear functions of rotational diffusion of spin labels. Thus, these linear relationships can be used to transfer T1-1 values into spin label rotational rates as a precise description of membrane fluidity. This linearity is independent through the wide range of conditions including lipid environment, depth in membrane, local hydrophobicity, and the anisotropy of rotational motion. Transferring the spin-lattice relaxation rates into the rotational diffusion coefficients makes the results obtained from saturation recovery EPR spin labeling easy to understand and readily comparable with other membrane fluidity data.

13.
Materials (Basel) ; 15(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36013910

RESUMEN

An analysis of our data on 1H and 13C spin-lattice and spin-spin relaxation times and rates in aqueous suspensions of purified nanodiamonds produced by detonation technique (DNDs), DNDs with grafted paramagnetic ions, and micro- and nanodiamonds produced by milling bulk high-temperature high-pressure diamonds is presented. It has been established that in all the studied materials, the relaxation rates depend linearly on the concentration of diamond particles in suspensions, the concentration of grafted paramagnetic ions, and surface paramagnetic defects produced by milling, while the relaxation times exhibit a hyperbolic dependence on the concentration of paramagnetic centers. This is a universal law that is valid for suspensions, gels, and solids. The results obtained will expand the understanding of the properties of nano- and microdiamonds and will be useful for their application in quantum computing, spintronics, nanophotonics, and biomedicine.

14.
Materials (Basel) ; 15(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35888431

RESUMEN

This article focuses on EPR relaxation measurements in various carbon samples, e.g., natural carbons-anthracite, coal, higher anthraxolites, graphite; synthetically obtained carbons-glassy carbons, fullerenes, graphene, graphene oxide, reduced graphene oxide, graphite monocrystals, HOPG, nanoribbons, diamonds. The short introduction presents the basics of resonant electron spin relaxation techniques, briefly describing the obtained parameters. This review presents gathered results showing the processes leading to electron spin relaxation and typical ranges of electron spin relaxation rates for many different carbon types.

15.
Polymers (Basel) ; 14(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893941

RESUMEN

Starch paste is a very complex dispersion that cannot be clearly classified as a solution, colloid or suspension and many factors affects its properties. As these ambiguities constitute a barrier to technological development, the aim of this study was to investigate the interaction of starch macromolecules with water by analysing the results of rheological properties, low field nuclear magnetic resonance (LF NMR), dynamic light scattering (DLS) and ζ potential analyses. Starch pastes with a concentration of 1%, prepared with distilled water and buffered to pH values of 2.5, 7.0 and 9.5 were analysed. It was proved that the pH buffering substantially decreased the values of consistency index but the pH value itself was not significant. LF NMR studies indicated that the dissolution of starch in water resulted in a reduction in spin-lattice as well as spin-spin relaxation times. Moreover, changes in relaxation times followed the patterns observed in rheological studies. Electrokinetic and DLS analyses showed that potential values are primarily influenced by the properties of the starches themselves and, to a lesser extent, by the environmental conditions. The conducted research also showed complementarity and, to some extent, substitutability of the applied research methods as well as exclusion chromatography (a method not used in this work).

16.
Int J Cardiol Heart Vasc ; 40: 101029, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434258

RESUMEN

Background: Cardiovascular magnetic resonance (CMR) is the test of choice for diagnosis and risk stratification of myocardial inflammation in acute viral myocarditis. The objective of this study was to assess patterns of CMR inflammation in a cohort of acute myocarditis patients from Northern Africa, Asia, and the Middle East using unsupervised machine learning. Methods: A total of 169 racially and ethnically diverse adults ( ≥ 18 years of age) with CMR confirmed acute myocarditis were studied. The primary outcome was a combined clinical endpoint of cardiac death, arrhythmia, and dilated cardiomyopathy. Machine learning was used for exploratory analysis to identify patterns of CMR inflammation. Results: Our cohort was diverse with 25% from Northern Africa, 33% from Southern Asia, and 28% from Western Asia/the Middle East. Twelve patients met the combined clinical endpoint - 3 had arrythmia, 8 had dilated cardiomyopathy, and 1 died. Patients who met the combined endpoint had increased anterior (p = 0.034) and septal (p = 0.042) late gadolinium enhancement (LGE). Multivariable logistic regression, adjusted for age, gender, and BMI, found that patients from Southern Asia (p = 0.041) and the Middle East (p = 0.043) were independently associated with lateral LGE. Unsupervised machine learning and factor analysis identified two distinct CMR patterns of inflammation, one with increased LGE and the other with increased myocardial T1/T2. Conclusions: We found that anteroseptal inflammation is associated with worsened outcomes. Using machine learning, we identified two patterns of myocardial inflammation in acute myocarditis from CMR in a racially and ethnically diverse group of patients from Southern Asia, Northern Africa, and the Middle East.

17.
Solid State Nucl Magn Reson ; 118: 101783, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247851

RESUMEN

Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1H- and 2H- tetrazole tautomers can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using 13C, 15N and 1H solid-state NMR. Variable-temperature 13C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). 15N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1H- and 2H-tetrazole tautomers. Static 1H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.


Asunto(s)
Imagen por Resonancia Magnética , Tetrazoles , Enlace de Hidrógeno , Irbesartán , Espectroscopía de Resonancia Magnética/métodos
18.
J Magn Reson ; 335: 107145, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35078010

RESUMEN

A model was developed for predicting a locked signal under a series of refocusing pulses for Nuclear Quadrupole Resonance (NQR) of spin I=32 and tested with a powder of KClO3. This work represents the first direct NQR detection of the 39K line of potassium chlorate. The characteristic time constants, T1,T2e and T2∗, were measured to determine the detectability of potassium chlorate via 39K-NQR. The echo train T2e was found to be strongly dependent on the refocusing pulse-spacing and weakly dependent on the refocusing pulse strength. The optimal angles of the excitation and echo pulse for a pulse train were also determined, as well as, the resonance-frequency dependence on sample temperature.


Asunto(s)
Algoritmos , Cloratos , Espectroscopía de Resonancia Magnética
19.
J Phys Condens Matter ; 34(15)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35045409

RESUMEN

Ruby (α-Al2O3doped with Cr3+) has been an archetypal material in the development of optical spectroscopy of the solid state for the last 150 years and was the first material that was demonstrated to lase. Notwithstanding the vast literature on ruby, one effect was somehow missed: in a magnetic fieldB∥c∼ 235 mT, the spin-lattice relaxation timeT1for the |+3/2⟩ level in the4A2ground state is massively lengthened to ∼12 s at 1.4 K as demonstrated in this study. This very long relaxation time enables optical pumping of the |+3/2⟩ level via theR1(±1/2) lines and a considerable +3/2 spin polarization of ∼95% is readily achieved. The observed magnetic field dependence can be quantitatively described using the one-phonon relaxation process.

20.
J Magn Reson ; 331: 107050, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507236

RESUMEN

We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for ß≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA