Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 212: 165-171, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609835

RESUMEN

In this work, the extraction of carboxylated nanocrystalline cellulose from oat husk as an agricultural waste was conducted by ammonium persulfate oxidation. This is a one-step and efficient process for removal of amorphous regions from cellulosic fibers. The mean size of cellulose nanoparticles is about 30 nm with spherical morphology. The comparison of the infrared spectrum of the nanoparticles of cellulose and the primary oat husk evidences the successful elimination of non-cellulosic structures such as hemicellulose, lignin in nanocellulose sample. The X-ray diffraction patterns show higher degree of crystalline index in nanocellulose (57%) compared to the primary oat husk (38%). The comparison of the onsets of temperature degradation of the samples shows nanocellulose is less thermally stable than oat husk. The hydrophilic surface of the nanocellulose was modified using cetyltrimethylammonium bromide (CTAB) cationic surfactant to improve loading capacity of hydrophobic indomethacin drug which has a low bioavailability and poor solubility in water. In vitro release profile of the indomethacin and drug release mechanism was studied. The results show the 67% of drug is released within 12 h and CTAB modified nanocellulose greatly acts as an indomethacin controlled-release carrier. Study of the in vitro drug release kinetics shows driven mechanism is diffusion-controlled release.


Asunto(s)
Avena , Indometacina , Celulosa/química , Cetrimonio , Liberación de Fármacos
2.
Carbohydr Polym ; 278: 118956, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973772

RESUMEN

Nowadays, skin biocompatible products are fast-growing markets for nanocelluloses with increasing number of patents published in last decade. This review highlights recent developments, market trends, safety assessments, and regulations for different nanocellulose types (i.e. nanoparticles, nanocrystals, nanofibers, nanoyarns, bacterial nanocellulose) used in skincare, cosmetics, and healthcare. The specific properties of nanocelluloses for skincare include high viscosity and shear thinning properties, surface functionality, dispersion stability, water-holding capacity, purity, and biocompatibility. Depending on their morphology (e.g. size, aspect ratio, geometry, porosity), nanocelluloses can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. Nanocellulose composite particles were recently developed as carriers for bioactive compounds or UV-blockers and platforms for wound healing and skin sensors. As toxicological assessment depends on morphologies and intrinsic properties, stringent regulation is needed from the testing of efficient nanocellulose dosages. The challenges and perspectives for an industrial breakthrough are related to optimization of production and processing conditions.


Asunto(s)
Materiales Biocompatibles/farmacología , Celulosa/farmacología , Cosméticos/farmacología , Nanopartículas/química , Cuidados de la Piel , Materiales Biocompatibles/química , Celulosa/química , Cosméticos/química , Atención a la Salud , Composición de Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA