Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400794, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207053

RESUMEN

Sphingolipids play vital roles in metabolism and regulation. Previously, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, was reported to directly regulate ceramide synthesis genes by binding to their promoters. Herein, sphingosine kinase 2 (SPHK2), responsible for producing sphingosine-1-phosphate (S1P), was found to interact with AHR through LXXLL motifs, influencing AHR nuclear localization. Through mutagenesis and co-transfection studies, AHR activation and subsequent nuclear translocation was hindered by SPHK2 LXXLL mutants or SPHK2 lacking a nuclear localization signal (NLS). Similarly, an NLS-deficient AHR mutant impaired SPHK2 nuclear translocation. Silencing SPHK2 reduced AHR expression and its target gene CYP1A1, while SPHK2 overexpression enhanced AHR activity. SPHK2 was found enriched on the CYP1A1 promoter, underscoring its role in AHR target gene activation. Additionally, S1P rapidly increased AHR expression at both the mRNA and protein levels and promoted AHR recruitment to the CYP1A1 promoter. Using mouse models, AHR deficiency compromised SPHK2 nuclear translocation, illustrating a critical interaction where SPHK2 facilitates AHR nuclear localization and supports a positive feedback loop between AHR and sphingolipid enzyme activity in the nucleus. These findings highlight a novel function of SPHK2 in regulating AHR activity and gene expression.

2.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38367623

RESUMEN

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Asunto(s)
Corazón , Lisofosfolípidos , Esfingolípidos , Esfingosina/análogos & derivados , Animales , Esfingolípidos/metabolismo , Isoenzimas , Mamíferos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163890

RESUMEN

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pez Cebra , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ceramidas/uso terapéutico , Proteína Reguladora Asociada a mTOR , Factor de Transcripción YY1/genética
4.
Gene ; 897: 148063, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048970

RESUMEN

There is a known correlation between cancer and changes in sphingolipids, specifically the production of sphingosine-1-phosphate (S1P) by sphingosine kinases 1 and 2 (SPHK1/SPHK2). However, a potential relationship between bioactive lipid molecules, SPHK, and the response to DNA damage is unknown. We aimed to evaluate the response of oral keratinocytes and head and neck cancer cell lines with SPHK2/S1P alterations to DNA damage. This assessment is intended to establish a link between these alterations and tumorigenesis as well as resistance to therapy. SPHK2 overexpression in oral squamous cells promoted evasion of apoptosis and cell cycle control, which increased the resistance to genotoxic agents (chemical and physical). Cells that have SPHK2 overexpression are more prone to DNA damage, which allows those damaged cells to survive and multiply. This is associated with a decrease in overall DNA methylation. These discoveries help to clarify the connection between SPHK2 and the response to DNA damage, as well as its capacity to aid in the resistance against genotoxic agents, including those used in cancer treatment.


Asunto(s)
Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , Línea Celular , Reparación del ADN , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/metabolismo , Humanos
5.
J Chemother ; : 1-11, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968995

RESUMEN

Resveratrol (RSV) has been found to have a cancer-suppressing effect in a variety of cancers, including non-small cell lung cancer (NSCLC). Studies have shown that sine oculis homeobox 4 (SIX4) and sphingosine kinase 2 (SPHK2) are tumour promoters of NSCLC. However, whether RSV regulates SIX4 and SPHK2 to mediate NSCLC cell functions remains unclear. NSCLC cell functions were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay and wound healing assay. Protein expression levels were detected by western blot. SIX4 and SPHK2 mRNA levels in NSCLC tumour tissues were examined using quantitative real-time PCR. In addition, mice xenograft models were built to explore the impact of RSV on NSCLC tumour growth. RSV inhibited NSCLC cell proliferation, invasion and migration, while facilitated apoptosis. SIX4 and SPHK2 were up-regulated in NSCLC tissues and cells, and their expression was reduced by RSV. Knockdown of SIX4 and SPHK2 suppressed NSCLC cell growth, invasion and migration, and the regulation of RSV on NSCLC cell functions could be reversed by SIX4 and SPHK2 overexpression. RSV inactivated Wnt/ß-catenin pathway via decreasing SIX4 and SPHK2 levels. In animal experiments, RSV reduced NSCLC tumour growth in vivo. RSV repressed NSCLC malignant process by decreasing SIX4 and SPHK2 levels to restrain the activity of Wnt/ß-catenin pathway.

6.
Nutrients ; 15(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836459

RESUMEN

Alcoholic liver disease (ALD), leading to the most common chronic liver diseases, is increasingly emerging as a global health problem, which is intensifying the need to develop novel treatments. Herein, our work aimed to estimate the therapeutic efficacy of red rice (Oryza sativa L.) seed coat on ALD and further uncover the underlying mechanisms. Red rice seed coat extract (RRA) was obtained with citric acid-ethanol and analyzed via a widely targeted components approach. The potential targets of RRA to ALD were predicted by bioinformatics analysis. Drunken behavior, histopathological examination, liver function, gut microbiota composition and intestinal barrier integrity were used to assess the effects of RRA (RRAH, 600 mg/kg·body weight; RRAL, 200 mg/kg·body weight) on ALD. Oxidative stress, inflammation, apoptosis associated factors and signaling pathways were measured by corresponding kits, Western blot and immunofluorescence staining. In ALD model mice, RRA treatment increased sphingosine kinase 2 (SPHK2) and sphingosine-1-phosphate (S1P) levels, improved gut microbiota composition, restored intestinal barrier, decreased lipopolysaccharide (LPS) levels in plasma and the liver, cut down Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-κB) pathways, alleviated liver pathological injury and oxidative stress, attenuated inflammation and apoptosis and enhanced liver function. To sum up, RRA targeting SPHK2 can ameliorate ALD by repairing intestinal barrier damage and reducing liver LPS level via the TLR4/NF-κB pathway and intestinal microbiota, revealing that red rice seed coat holds potential as a functional food for the prevention and treatment of ALD.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Oryza , Ratones , Animales , Oryza/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Hepatopatías Alcohólicas/prevención & control , Hígado/metabolismo , Inflamación/metabolismo , Peso Corporal , Ratones Endogámicos C57BL
7.
Am J Cancer Res ; 13(6): 2342-2359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424828

RESUMEN

This study explored the expression of sphingosine kinase 2 (SPHK2) and microRNA miR-19a-3p (miR-19a-3p) in patients with Hypopharyngeal squamous cell carcinoma (HSCC) together with pathways affecting HSCC invasion and metastasis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) were performed to assess the differential expression of SPHK2 and miR-19a-3p in patients with HSCC lymph node metastasis (LNM). Immunohistochemical (IHC) results were analyzed together with clinical information to evaluate their clinical significance. Subsequently, the functional effects of SPHK2 overexpression and knockdown on FaDu cells were evaluated in in vitro experiments. We performed in vivo experiments using nude mouse to assess the effects of SPHK2 knockdown on tumor formation, growth and LNM. Finally, we explored upstream and downstream signaling pathways associated with SPHK2 in HSCC. SPHK2 was significantly elevated in HSCC patients with LNM and survival was lower in patients with enhanced SPHK2 expression (P < 0.05). We also demonstrated that SPHK2 overexpression accelerated the proliferation, migration, and invasion. Using animal models, we further verified that SPHK2 deletion abrogated tumor growth and LNM. In terms of mechanism, we found that miR-19a-3p was significantly reduced in HSCC patients with LNM and was negatively associated with SPHK2. MiR-19a-3p and SPHK2 could regulate tumor proliferation and invasion through the PI3K/AKT axis. SPHK2 was found to contribute significantly to both LNM and HSCC patient prognosis and was shown to be an independent risk factor for LNM and staging in HSCC patients. The miR-19a-3p/SPHK2/PI3K/AKT axis was found to contribute to the development and outcome of HSCC.

8.
Chem Biol Drug Des ; 102(2): 255-261, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929215

RESUMEN

The sphingosine kinase-2 (SphK2), a main component of sphingolipid signal transduction, is reported as an innovative therapeutic candidate for cancer treatment. This study was conducted to investigate the suppression of SphK2 in increasing HT-29 colorectal cancer cells sensitivity to paclitaxel via inducing apoptosis and targeting c-FLIPS, MCL-1, and survivin expressions. Cells were transfected with siRNA against SphK2, PTX, or SphK2 activator. Proliferation and apoptosis were evaluated by MTT assay, and trypan blue staining and ELISA, respectively. SphK2, c-FLIPS, MCL-1, and survivin expression were determined by qRT-PCR and Western blotting. SphK2 siRNA increased cell death induced PTX. SphK2 agonist abolished silencing impact on cell survival. We found down-expression of C-FLIPS, MCL-1, and survivin by SphK2 siRNA transfection either alone or in paclitaxel treated cells, as well as elevation in cell apoptosis. Our results showed that SphK2 suppression may be an effective important modality to enhance cell sensitivity to paclitaxel via the induction of apoptosis in colorectal cancers.


Asunto(s)
Neoplasias Colorrectales , Paclitaxel , Humanos , Paclitaxel/farmacología , Survivin/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Apoptosis , ARN Interferente Pequeño/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Proliferación Celular , Línea Celular Tumoral
9.
FASEB J ; 36(8): e22398, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35792869

RESUMEN

Conjugated bile acids (CBAs) play major roles in hepatic gene regulation via nuclear S1P-inhibited histone deacetylase (HDACs). Gut microbiota modifies bile acid pool to generate CBAs and then CBAs returned to liver to regulate hepatic genes, fatty liver, and non-alcoholic fatty liver disease (NAFLD). However, it is not yet known how the gut microbiota was modified under the environment of inflammatory bowel disease (IBD). Here, we revealed that aberrant intestinal sphingosine kinases (SphKs), a major risk factor of IBD, modified gut microbiota by increasing the proportions of Firmicutes and Verrucomicrobia, which were associated with the increase in CBAs. When exposed to a high-fat diet (HFD), sphingosine kinases 2 knockout (SphK2KO) mice developed more severity of intestinal inflammation and hepatic steatosis than their wild-type (WT) littermates. Due to knockdown of nuclear SphK2, Sphk2KO mice exhibited an increase in sphingosine kinases 1 (SphK1) and sphingosine-1-phosphate (S1P) in intestinal epithelial cells. Therefore, the microbiota was modified in the environment of the SphK1/S1P-induced IBD. 16S rDNA amplicon sequencing of cecal contents indicated an increase of Firmicutes and Verrucomicrobia. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) measured an increase in CBAs, including taurocholic acid (TCA), taurodeoxycholic acid (TDCA), and glycocholic acid (GCA), in cecal contents and liver tissues of Sphk2KO mice. These CBAs accumulated in the liver promoted hepatic steatosis through downregulating the acetylation of H3K9, H3K14, H3K18 and H3K27 due to the CBAs-S1PR2-nuclear SphK2-S1P signaling pathway was blocked in HFD-SphK2KO mice. In summary, intestinal aberrant sphingolipid metabolism developed hepatic steatosis through the increase in CBAs associated with an increase in Firmicutes and Verrucomicrobia.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos y Sales Biliares , Cromatografía Liquida , Firmicutes , Metaboloma , Ratones , Esfingolípidos , Esfingosina , Espectrometría de Masas en Tándem , Verrucomicrobia
10.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682566

RESUMEN

Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1-/-, or Sphk2-/- mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2-/- renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2-/- cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.


Asunto(s)
Eritropoyetina , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epoetina alfa , Eritropoyetina/genética , Eritropoyetina/metabolismo , Fibroblastos/metabolismo , Hipoxia , Riñón/metabolismo , Ratones , ARN Mensajero/genética , Esfingosina/metabolismo
11.
Molecules ; 27(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163923

RESUMEN

In spite of advances in vaccination, control of the COVID-19 pandemic will require the use of pharmacological treatments against SARS-CoV2. Their development needs to consider the existence of two phases in the disease, namely the viral infection and the inflammatory stages. The main targets for antiviral therapeutic intervention are: (a) viral proteins, including the spike (S) protein characteristic of the viral cover and the viral proteases in charge of processing the polyprotein arising from viral genome translation; (b) host proteins, such as those involved in the processes related to viral entry into the host cell and the release of the viral genome inside the cell, the elongation factor eEF1A and importins. The use of antivirals targeted at host proteins is less developed but it has the potential advantage of not being affected by mutations in the genome of the virus and therefore being active against all its variants. Regarding drugs that address the hyperinflammatory phase of the disease triggered by the so-called cytokine storm, the following strategies are particularly relevant: (a) drugs targeting JAK kinases; (b) sphingosine kinase 2 inhibitors; (c) antibodies against interleukin 6 or its receptor; (d) use of the traditional anti-inflammatory corticosteroids.


Asunto(s)
Antivirales/química , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/patología , Química Farmacéutica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/ultraestructura
12.
Bioorg Chem ; 121: 105668, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35219046

RESUMEN

Sphingosine kinase (SphK), which catalyzes the transfer of phosphate from ATP to sphingosine (Sph) generating sphingosine-1-phosphate (S1P) has emerged as therapeutic target since the discovery of connections of S1P with cancer progress. So far, most effort has focused on the development of inhibitors of SphK1, and selective inhibitors of SphK2 have been much less explored. Here, we describe the syntheses of new sphingosine derivatives bearing a tetrasubstituted carbon atom at C-2, dimethylhydrazino or azo moieties in the polar head, and alkane, alkene or alkyne moieties as linkers between the polar ahead and the fatty tail. In vitro inhibitory assays based on a time resolved fluorescence energy transfer (TR-FRET) have revealed the hydrazino and alkynyl moieties as the best combination for the design of selective SphK2 inhibitors (19a and 19b). Docking studies showed that compounds 19a-b have the optimal binding to SphK2 through the exploitation of polar but also hydrophobic interactions of their head group with the head of the enzyme binding pocket, while also producing full contact of the fatty tail with the hydrophobic pocket of the enzyme. By contrast, this elongation causes loss of contact surface with the shorter hydrophobic toe of the SphK1 isoform, thus accounting for the SphK2-biased selectivity of these compounds. Cell viability assays of the most promising candidates 19a-b have shown that 19a is not cytotoxic to human endothelial cells at 30 µM.


Asunto(s)
Antineoplásicos , Esfingosina , Antineoplásicos/farmacología , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)
13.
Biochem Genet ; 60(5): 1748-1761, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35088224

RESUMEN

Gastric cancer (GC) is the second leading cause of cancer-related mortality worldwide. MicroRNAs (miRNAs) have been extensively reported to play a role in GC development; however, it remains unknown whether miR-153-3p participates in the nosogenesis of GC. GC tissues along with the adjacent nontumor tissues were obtained from 50 patients with GC. Moreover, we incubated human GC cell lines (SGC7901, AGS, MGC803, and BGC823) and a gastric epithelial cell line (GES-1) and then transfected BGC823 cells with miR-153-3p and DNA/SphK2 vector to determine the action of miR-153-3p and SphK2 on GC. RT-qPCR was performed to determine the levels of miR-153-3p and sphingosine kinase 2 (SphK2). The viability of BGC823 cells was measured by the CCK-8 assay, while wound healing assays and transwell assays were used to measure the migration and invasion ability of BGC823 cells. Western blotting analysis and immunohistochemistry (IHC) were conducted to evaluate the level of SphK2. The binding ability of miR-153-3p and SphK2 was determined by dual-luciferase reporter assays. The expression level of miR-153-3p was reduced in GC tissues and cells, while the SphK2 was enhanced. An increase in miR-153-3p level led to a decline in the growth and metastasis of GC cells and increased their apoptosis. Moreover, a decrease in miR-153-3p level elevated GC cells growth and metastasis, and attenuated their apoptosis. SphK2 was also corroborated as a downstream gene of miR-153-3p. Here, SphK2 expression was elevated in GC tissues and cells, indicating SphK2 might be involved in the development of GC. Rescue assays showed that miR-153-3p could reverse the effect of SphK2 on the cell growth, metastasis, and the apoptosis of GC cells. In conclusion, this study showed that miR-153-3p suppressed the growth and metastasis in GC cells by regulating SphK2, which might facilitate the search for novel biomarkers to treat GC.


Asunto(s)
MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Neoplasias Gástricas , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Neoplasias Gástricas/patología
14.
Glia ; 69(12): 2863-2881, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34399014

RESUMEN

Therapeutics that promote oligodendrocyte survival and remyelination are needed to restore neurological function in demyelinating diseases. Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through five G-protein coupled receptors. S1P receptor agonists such as Fingolimod are valuable immunosuppressants used to treat multiple sclerosis, and promote oligodendrocyte survival. However, the role for endogenous S1P, synthesized by the enzyme sphingosine kinase 2 (SphK2), in oligodendrocyte survival and myelination has not been established. This study investigated the requirement for SphK2 in oligodendrocyte survival and remyelination using the cuprizone mouse model of acute demyelination, followed by spontaneous remyelination. Oligodendrocyte density did not differ between untreated wild-type (WT) and SphK2 knockout (SphK2-/- ) mice. However, cuprizone treatment caused significantly greater loss of mature oligodendrocytes in SphK2-/- compared to WT mice. Following cuprizone withdrawal, spontaneous remyelination occurred in WT but not SphK2-/- mice, even though progenitor and mature oligodendrocyte density increased in both genotypes. Levels of cytotoxic sphingosine and ceramide were higher in the corpus callosum of SphK2-/- mice, and in contrast to WT mice, did not decline following cuprizone withdrawal in SphK2-/- mice. We also observed a significant reduction in myelin thickness with aging in SphK2-/- compared to WT mice. These results provide the first evidence that SphK2, the dominant enzyme catalyzing S1P synthesis in the adult brain, is essential for remyelination following a demyelinating insult and myelin maintenance with aging. We propose that persistently high levels of sphingosine and ceramide, a direct consequence of SphK2 deficiency, may block remyelination.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Cuerpo Calloso/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)
15.
Front Cell Neurosci ; 15: 660354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305532

RESUMEN

Gliomas are the most common and lethal malignant tumor in the central nervous system. The tumor oncogene sphingosine kinase 2 (SphK2) was previously found to be upregulated in glioma tissues and enhance glioma cell epithelial-to-mesenchymal transition through the AKT/ß-catenin pathway. Nevertheless, ubiquitination of SphK2 protein has yet to be well elucidated. In this study, mass spectrometry analysis was performed to identify proteins that interacted with SphK2 protein. Co-immunoprecipitation (co-IP) and immunoblotting (IB) were used to prove the specific interaction between SphK2 protein and the neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L) protein. Fluorescence microscopy was used for detecting the distribution of related proteins. Ubiquitylation assay was utilized to characterize that SphK2 was ubiquitylated by NEDD4L. Cell viability assay, flow cytometry assay, and transwell invasion assay were performed to illustrate the roles of NEDD4L-mediated SphK2 ubiquitination in glioma viability, apoptosis, and invasion, respectively. We found that NEDD4L directly interacted with SphK2 and ubiquinated it for degradation. Ubiquitination of SphK2 mediated by NEDD4L overexpression suppressed glioma cell viability and invasion but promoted glioma apoptosis. Knockdown of NEDD4L presented opposite results. Moreover, further results suggested that ubiquitination of SphK2 regulated glioma malignancy via the AKT/ß-catenin pathway. in vivo assay also supported the above findings. This study reveals that NEDD4L mediates SphK2 ubiquitination to regulate glioma malignancy and may provide some meaningful suggestions for glioma treatment.

16.
Cell Rep ; 35(5): 109076, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33951438

RESUMEN

We lack a mechanistic understanding of aging-mediated changes in mitochondrial bioenergetics and lipid metabolism that affect T cell function. The bioactive sphingolipid ceramide, induced by aging stress, mediates mitophagy and cell death; however, the aging-related roles of ceramide metabolism in regulating T cell function remain unknown. Here, we show that activated T cells isolated from aging mice have elevated C14/C16 ceramide accumulation in mitochondria, generated by ceramide synthase 6, leading to mitophagy/mitochondrial dysfunction. Mechanistically, aging-dependent mitochondrial ceramide inhibits protein kinase A, leading to mitophagy in activated T cells. This aging/ceramide-dependent mitophagy attenuates the antitumor functions of T cells in vitro and in vivo. Also, inhibition of ceramide metabolism or PKA activation by genetic and pharmacologic means prevents mitophagy and restores the central memory phenotype in aging T cells. Thus, these studies help explain the mechanisms behind aging-related dysregulation of T cells' antitumor activity, which can be restored by inhibiting ceramide-dependent mitophagy.


Asunto(s)
Envejecimiento , Ceramidas/metabolismo , Mitocondrias/metabolismo , Linfocitos T/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
17.
Ann Transl Med ; 9(8): 645, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987343

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is the leading cause of death from female cancers. In our previous study, sphingosine kinase 2 (SphK2) inhibitor was shown to display anti-EOC activities. The purpose of this study was to evaluate further the expression characteristics and clinical significance of SphK2 in EOC and to explore the roles and underlying mechanisms of SphK2 in EOC cell survival. METHODS: The expression of SphK2 was examined by immunohistochemistry (IHC) and Western blot, and its clinical implications and prognostic significance were analyzed. We performed a cellular proliferation assay, and a mouse xenograft model was established to confirm the roles of SphK2 in vitro and in vivo. Cell cycle analysis, apoptosis assay, and Western blot were performed to examine cell cycle progression and apoptosis rate. Gene set enrichment analysis (GSEA), and Western blot were used to investigate the downstream signaling pathways related to SphK2 function. RESULTS: The expression level of SphK2 was shown to be associated with stage, histological grade, lymph node metastasis, and ascites status. More importantly, a high SphK2 expression level was a prognostic indicator of overall survival (OS) and relapse-free survival (RFS). Moreover, knockdown of SphK2 arrested cell cycle progression and inhibited EOC cell proliferation both in vitro and in vivo. Furthermore, ERK/c-Myc, the key pathway in EOC progression, was important for SphK2-mediated mitogenic action in EOC cells. CONCLUSIONS: Our findings provided the first evidence that SphK2 played a crucial role in EOC proliferation by regulating the ERK/c-Myc pathway. This indicated that SphK2 might serve as a prognostic marker and potential therapeutic target in EOC.

18.
Matrix Biol ; 98: 32-48, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34015468

RESUMEN

The sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that is now appreciated as key regulatory factor for various cellular functions in the kidney, including matrix remodeling. It is generated by two sphingosine kinases (Sphk), Sphk1 and Sphk2, which are ubiquitously expressed, but have distinct enzymatic activities and subcellular localizations. In this study, we have investigated the role of Sphk2 in podocyte function and its contribution to diabetic nephropathy. We show that streptozotocin (STZ)-induced nephropathy and albuminuria in mice is prevented by genetic depletion of Sphk2. This protection correlated with an increased protein expression of the transcription factor Wilm's tumor suppressor gene 1 (WT1) and its target gene nephrin, and a reduced macrophage infiltration in immunohistochemical renal sections of STZ-treated Sphk2-/- mice compared to STZ-treated wildtype mice. To investigate changes on the cellular level, we used an immortalized human podocyte cell line and generated a stable knockdown of Sphk2 (Sphk2-kd) by a lentiviral transduction method. These Sphk2-kd cells accumulated sphingosine as a consequence of the knockdown, and showed enhanced nephrin and WT1 mRNA and protein expressions similar to the finding in Sphk2 knockout mice. Treatment of wildtype podocytes with the highly selective Sphk2 inhibitor SLM6031434 caused a similar upregulation of nephrin and WT1 expression. Furthermore, exposing cells to the profibrotic mediator transforming growth factor ß (TGFß) resulted on the one side in reduced nephrin and WT1 expression, but on the other side, in upregulation of various profibrotic marker proteins, including connective tissue growth factor (CTGF), fibronectin (FN) and plasminogen activator inhibitor (PAI) 1. All these effects were reverted by Sphk2-kd and SLM6031434. Mechanistically, the protection by Sphk2-kd may depend on accumulated sphingosine and inhibited PKC activity, since treatment of cells with exogenous sphingosine not only reduced the phosphorylation pattern of PKC substrates, but also increased WT1 protein expression. Moreover, the selective stable knockdown of PKCδ increased WT1 expression, suggesting the involvement of this PKC isoenzyme in WT1 regulation. The glucocorticoid dexamethasone, which is a treatment option in many glomerular diseases and is known to mediate a nephroprotection, not only downregulated Sphk2 and enhanced cellular sphingosine, but also enhanced WT1 and nephrin expressions, thus, suggesting that parts of the nephroprotective effect of dexamethasone is mediated by Sphk2 downregulation. Altogether, our data demonstrated that loss of Sphk2 is protective in diabetes-induced podocytopathy and can prevent proteinuria, which is a hallmark of many glomerular diseases. Thus, Sphk2 could serve as a new attractive pharmacological target to treat proteinuric kidney diseases.


Asunto(s)
Nefropatías Diabéticas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Podocitos , Proteínas WT1 , Albuminuria/genética , Animales , Nefropatías Diabéticas/genética , Genes Supresores de Tumor , Proteínas de la Membrana , Ratones , Ratones Noqueados , Estreptozocina
19.
J Cell Signal ; 2(1): 47-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644778

RESUMEN

Acute respiratory distress syndrome (ARDS) is the major cause of mortality among hospitalized acute lung injury (ALI) patients. Lung macrophages play an important role in maintaining the tissue-fluid homeostasis following injury. We recently showed that circulating monocytes recruited into the alveolar space suppressed the stimulator of type 1 interferon genes (STING) signaling in alveolar macrophages through sphingosine-1-phosphate (S1P). We used CD11b-DTR mice to deplete CD11b+ monocytes following LPS or Pseudomonas aeruginosa infection. Depletion of CD11b+ monocytes leads to the persistent inflammatory injury, infiltration of neutrophils, activation of STING signaling and mortality following lung infection. We demonstrated that adoptively transferred SPHK2-CD11b+ monocytes into CD11b-DTR mice after pathogenic infection rescue lung inflammatory injury.

20.
Eur J Med Chem ; 213: 113164, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454547

RESUMEN

Sphingosine kinases (SphKs) are lipid kinases that catalyze the phosphorylation of sphingosine (Sph) to sphingosine-1-phosphate (S1P). As a bioactive lipid, S1P plays a role outside and inside the cell to regulate biological processes. The overexpression of SphKs is related to a variety of pathophysiological conditions. Targeting the S1P signaling pathway is a potential treatment strategy for many diseases. SphKs are key kinases of the S1P signaling pathway. The SphK family includes two isoforms: SphK1 and SphK2. Determination of the co-crystal structure of SphK1 with various inhibitors has laid a solid foundation for the development of small molecule inhibitors targeting SphKs. This paper reviews the differences and connections between the two isoforms and the structure of SphK1 crystals, especially the structure of its Sph "J-shaped" channel binding site. This review also summarizes the recent development of SphK1 and SphK2 selective inhibitors and the exploration of the unresolved SphK2 structure.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Animales , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA