Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 445: 138712, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364494

RESUMEN

Honey, recognized for its diverse flavors and nutritional benefits, confronts challenges in maintaining authenticity and quality due to factors like adulteration and mislabelling. This review undertakes a comprehensive exploration of the utility of Near-Infrared (NIR) spectroscopy as a non-destructive analytical method for concurrently evaluating both honey quantity and authenticity. The primary purpose of this investigation is to delve into the various applications of NIR spectroscopy in honey analysis, with a specific focus on its capability to identify and quantify significant quality parameters such as sugar content, moisture levels, 5-HMF, and proline content. Results from the study underscore the effectiveness of NIR spectroscopy, especially when integrated with advanced chemometrics models. This combination not only facilitates quantification of diverse quality parameters but also enhances the classification of honey based on geographical and botanical origin. The technology emerges as a potent tool for detecting adulteration, addressing critical challenges in preserving the authenticity and quality of honey products. The impact of this critical analysis extends to shedding light on the current state, challenges, and future prospects of applying NIR spectroscopy in the honey industry. This analysis outlines the current challenges and future prospects of NIR spectroscopy in the honey industry. Emphasizing its potential to improve consumer confidence and food safety, the research has broader implications for authenticity and quality assurance in honey. Integrating NIR spectroscopy into industry practices could establish stronger quality control measures, benefiting both producers and consumers globally.


Asunto(s)
Miel , Miel/análisis , Espectroscopía Infrarroja Corta/métodos , Contaminación de Alimentos/análisis , Carbohidratos/análisis , Inocuidad de los Alimentos
2.
J Synchrotron Radiat ; 31(Pt 1): 202-207, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930256

RESUMEN

Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is a powerful tool for identifying chemical bonding states at synchrotron radiation facilities. Advances in new materials require researchers in both academia and industry to measure tens to hundreds of samples during the available beam time on a synchrotron beamline, which is typically allocated to users. Automated measurement methods, along with analysis software, have been developed for beamlines. Automated measurements facilitate high-throughput experiments and accumulate vast amounts of measured spectral data. The analysis software supports various functions for analyzing the experimental data; however, these analysis methods are complicated, and learning them can be time-consuming. To process large amounts of spectral data, a new analysis software, dedicated to NEXAFS spectroscopy, that is easy to use and can provide results in a short time is desired. Herein, the development of Beagle is described, software calculating molecular orientation from NEXAFS spectroscopy data that can report results in a short time comparable with that required to measure one sample at the beamline. It was designed to progress in a single sequence from data loading to the printing of the results with a `click of a button'. The functions of the software include recognizing the dataset, correcting the background, normalizing the plot, calculating the electron yield and determining the molecular orientation. The analysis results can be saved as {\tt{.txt}} files (spectral data), {\tt{.pdf}} files (graphic images) and Origin files (spectral data and graphic images).

3.
Sensors (Basel) ; 23(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37896678

RESUMEN

This study designs a spectrum data collection device and system based on the Internet of Things technology, aiming to solve the tedious process of chlorophyll collection and provide a more convenient and accurate method for predicting chlorophyll content. The device has the advantages of integrated design, portability, ease of operation, low power consumption, low cost, and low maintenance requirements, making it suitable for outdoor spectrum data collection and analysis in fields such as agriculture, environment, and geology. The core processor of the device uses the ESP8266-12F microcontroller to collect spectrum data by communicating with the spectrum sensor. The spectrum sensor used is the AS7341 model, but its limited number of spectral acquisition channels and low resolution may limit the exploration and analysis of spectral data. To verify the performance of the device and system, this experiment collected spectral data of Hami melon leaf samples and combined it with a chlorophyll meter for related measurements and analysis. In the experiment, twelve regression algorithms were tested, including linear regression, decision tree, and support vector regression. The results showed that in the original spectral data, the ETR method had the best prediction effect at a wavelength of 515 nm. In the training set, RMSEc was 0.3429, and Rc2 was 0.9905. In the prediction set, RMSEp was 1.5670, and Rp2 was 0.8035. In addition, eight preprocessing methods were used to denoise the original data, but the improvement in prediction accuracy was not significant. To further improve the accuracy of data analysis, principal component analysis and isolation forest algorithm were used to detect and remove outliers in the spectral data. After removing the outliers, the RFR model performed best in predicting all wavelength combinations of denoised spectral data using PBOR. In the training set, RMSEc was 0.8721, and Rc2 was 0.9429. In the prediction set, RMSEp was 1.1810, and Rp2 was 0.8683.


Asunto(s)
Clorofila , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Análisis de los Mínimos Cuadrados , Clorofila/análisis , Hojas de la Planta/química , Agricultura
4.
J Comput Biophys Chem ; 22(5): 569-587, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37829318

RESUMEN

Topological data analysis (TDA) is an emerging field in mathematics and data science. Its central technique, persistent homology, has had tremendous success in many science and engineering disciplines. However, persistent homology has limitations, including its inability to handle heterogeneous information, such as multiple types of geometric objects; being qualitative rather than quantitative, e.g., counting a 5-member ring the same as a 6-member ring, and a failure to describe non-topological changes, such as homotopic changes in protein-protein binding. Persistent topological Laplacians (PTLs), such as persistent Laplacian and persistent sheaf Laplacian, were proposed to overcome the limitations of persistent homology. In this work, we examine the modeling and analysis power of PTLs in the study of the protein structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain (RBD). First, we employ PTLs to study how the RBD mutation-induced structural changes of RBD-angiotensin-converting enzyme 2 (ACE2) binding complexes are captured in the changes of spectra of the PTLs among SARS-CoV-2 variants. Additionally, we use PTLs to analyze the binding of RBD and ACE2-induced structural changes of various SARS-CoV-2 variants. Finally, we explore the impacts of computationally generated RBD structures on a topological deep learning paradigm and predictions of deep mutational scanning datasets for the SARS-CoV-2 Omicron BA.2 variant. Our results indicate that PTLs have advantages over persistent homology in analyzing protein structural changes and provide a powerful new TDA tool for data science.

5.
Found Data Sci ; 5(1): 26-55, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37841699

RESUMEN

Path homology proposed by S.-T.Yau and his co-workers provides a new mathematical model for directed graphs and networks. Persistent path homology (PPH) extends the path homology with filtration to deal with asymmetry structures. However, PPH is constrained to purely topological persistence and cannot track the homotopic shape evolution of data during filtration. To overcome the limitation of PPH, persistent path Laplacian (PPL) is introduced to capture the shape evolution of data. PPL's harmonic spectra fully recover PPH's topological persistence and its non-harmonic spectra reveal the homotopic shape evolution of data during filtration.

6.
ArXiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36748007

RESUMEN

Topological data analysis (TDA) is an emerging field in mathematics and data science. Its central technique, persistent homology, has had tremendous success in many science and engineering disciplines. However, persistent homology has limitations, including its inability to handle heterogeneous information, such as multiple types of geometric objects; being qualitative rather than quantitative, e.g., counting a 5-member ring the same as a 6-member ring, and a failure to describe non-topological changes, such as homotopic changes in protein-protein binding. Persistent topological Laplacians (PTLs), such as persistent Laplacian and persistent sheaf Laplacian, were proposed to overcome the limitations of persistent homology. In this work, we examine the modeling and analysis power of PTLs in the study of the protein structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain (RBD). First, we employ PTLs to study how the RBD mutation-induced structural changes of RBD-angiotensin-converting enzyme 2 (ACE2) binding complexes are captured in the changes of spectra of the PTLs among SARS-CoV-2 variants. Additionally, we use PTLs to analyze the binding of RBD and ACE2-induced structural changes of various SARS-CoV-2 variants. Finally, we explore the impacts of computationally generated RBD structures on a topological deep learning paradigm and predictions of deep mutational scanning datasets for the SARS-CoV-2 Omicron BA.2 variant. Our results indicate that PTLs have advantages over persistent homology in analyzing protein structural changes and provide a powerful new TDA tool for data science.

7.
Carbohydr Res ; 524: 108745, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680966

RESUMEN

Phytochemical investigation of the seeds of Cichorium intybus L (C. intybus) led to isolate n-hexacosane (CI-1), an aliphatic higher ketone, n-nonacosan-3-one (CI-2), two aliphatic acid esters characterized as n-octacosanyl decanoate (CI-3) and n-tricosanyl hexadecanoate (CI-4), two mixed glycerides identified as as glyceryl-1-(hexadec-7- enoyl)-2- tetradecanoyl-3-hexadecanoate (Cl-5) and glyceryl-1- (eicos-9-enoyl)-2,3, bis-eicosanoate (Cl-6), and three e steroidal constituents and their structures were elucidated as as stigmast-5, 22-dien-3ß -ol-21-oic acids (Cl-7), stigmasterol-3ß-d-glucopyranoside (Cl-8) and stigmast-5, 22-dien-3-ß-ol-3-ß-d-glucuronopyranoside (Cl-9). The dry seeds powder was defatted and finally extracted with ethanol by using a maceration method. The ethanol was evaporated near to dryness and silica gel was added to the extract and a slurry with the help of methanol solvent was prepared. The slurry was loaded to the column by using petroleum ether and was eluted with a mixture of chloroform and methanol. A series of test tubes were collected and each test tube with 2 mL eluents was collected. Based on the thin layer chromatography (TLC) the content of nine test tubes were considered as pure compounds. The solvent was evaporated from the test tube at room temperature. All the nine compounds from the column were characterized by using Infrared (IR), Nuclear Magnetic Resonance (NMR) and Mass spectrometry (MS). Eight compounds were previously isolated from the plant and they showed various biological activities. A new compound was isolated for the first time from the plant kingdoms. Based on the chromatographic and spectroscopic analysis the new compound was characterized as stigmasterol carboxylic acid (CI-9). The isolated new compound could be used to treat liver and cardiac diseases.


Asunto(s)
Glicósidos , Terpenos , Glicósidos/análisis , Terpenos/análisis , Estigmasterol/análisis , Metanol , Extractos Vegetales/química , Semillas/química , Espectroscopía de Resonancia Magnética , Solventes
8.
Found Data Sci ; 3(1): 67-97, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34485918

RESUMEN

Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA), while graph theory has had a significant impact on data science. Our earlier work introduced the persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and geometric analysis. In PSG theory, families of persistent Laplacian matrices (PLMs) corresponding to various topological dimensions are constructed via a filtration to sample a given dataset at multiple scales. The harmonic spectra from the null spaces of PLMs offer the same topological invariants, namely persistent Betti numbers, at various dimensions as those provided by PH, while the non-harmonic spectra of PLMs give rise to additional geometric analysis of the shape of the data. In this work, we develop an open-source software package, called highly efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of PSGs in science, engineering, and technology. To ensure the reliability and robustness of HERMES, we have validated the software with simple geometric shapes and complex datasets from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues are very sensitive to data abnormality.

9.
Int J Numer Method Biomed Eng ; 36(9): e3376, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515170

RESUMEN

Persistent homology is constrained to purely topological persistence, while multiscale graphs account only for geometric information. This work introduces persistent spectral theory to create a unified low-dimensional multiscale paradigm for revealing topological persistence and extracting geometric shapes from high-dimensional datasets. For a point-cloud dataset, a filtration procedure is used to generate a sequence of chain complexes and associated families of simplicial complexes and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a full set of topological persistence can be completely recovered from the harmonic persistent spectra, that is, the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian matrices. However, non-harmonic spectra of the Laplacian matrices induced by the filtration offer another powerful tool for data analysis, modeling, and prediction. In this work, fullerene stability is predicted by using both harmonic spectra and non-harmonic persistent spectra, while the latter spectra are successfully devised to analyze the structure of fullerenes and model protein flexibility, which cannot be straightforwardly extracted from the current persistent homology. The proposed method is found to provide excellent predictions of the protein B-factors for which current popular biophysical models break down.


Asunto(s)
Análisis de Datos , Proteínas/química
10.
PeerJ ; 8: e8179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31934499

RESUMEN

BACKGROUND: Existing tools for chemometric analysis of vibrational spectroscopy data have enabled characterization of materials and biologicals by their broad molecular composition. The Rametrix™ LITE Toolbox v1.0 for MATLAB® is one such tool available publicly. It applies discriminant analysis of principal components (DAPC) to spectral data to classify spectra into user-defined groups. However, additional functionality is needed to better evaluate the predictive capabilities of these models when "unknown" samples are introduced. Here, the Rametrix™ PRO Toolbox v1.0 is introduced to provide this capability. METHODS: The Rametrix™ PRO Toolbox v1.0 was constructed for MATLAB® and works with the Rametrix™ LITE Toolbox v1.0. It performs leave-one-out analysis of chemometric DAPC models and reports predictive capabilities in terms of accuracy, sensitivity (true-positives), and specificity (true-negatives). Rametrix™PRO is available publicly through GitHub under license agreement at: https://github.com/SengerLab/RametrixPROToolbox. Rametrix™ PRO was used to validate Rametrix™ LITE models used to detect chronic kidney disease (CKD) in spectra of urine obtained by Raman spectroscopy. The dataset included Raman spectra of urine from 20 healthy individuals and 31 patients undergoing peritoneal dialysis treatment for CKD. RESULTS: The number of spectral principal components (PCs) used in building the DAPC model impacted the model accuracy, sensitivity, and specificity in leave-one-out analyses. For the dataset in this study, using 35 PCs in the DAPC model resulted in 100% accuracy, sensitivity, and specificity in classifying an unknown Raman spectrum of urine as belonging to a CKD patient or a healthy volunteer. Models built with fewer or greater number of PCs showed inferior performance, which demonstrated the value of Rametrix™ PRO in evaluating chemometric models constructed with Rametrix™ LITE.

11.
Int J Pharm ; 511(1): 488-504, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27397869

RESUMEN

The main purpose of the study was to evaluate various pre-processing and quantification approaches of Raman spectrum to quantify low level of amorphous content in milled lactose powder. To improve the quantification analysis, several spectral pre-processing methods were used to adjust background effects. The effects of spectral noise on the variation of determined amorphous content were also investigated theoretically by propagation of error analysis and were compared to the experimentally obtained values. Additionally, the applicability of calibration method with crystalline or amorphous domains in the estimation of amorphous content in milled lactose powder was discussed. Two straight baseline pre-processing methods gave the best and almost equal performance. By the succeeding quantification methods, PCA performed best, although the classical least square analysis (CLS) gave comparable results, while peak parameter analysis displayed to be inferior. The standard deviations of experimental determined percentage amorphous content were 0.94% and 0.25% for pure crystalline and pure amorphous samples respectively, which was very close to the standard deviation values from propagated spectral noise. The reasonable conformity between the milled samples spectra and synthesized spectra indicated representativeness of physical mixtures with crystalline or amorphous domains in the estimation of apparent amorphous content in milled lactose.


Asunto(s)
Química Farmacéutica/métodos , Lactosa/análisis , Espectrometría Raman/métodos , Lactosa/química , Análisis de Componente Principal , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA