Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36365770

RESUMEN

Additive manufacturing technologies have facilitated the construction of intricate geometries, which otherwise would be an extenuating task to accomplish by using traditional processes. Particularly, this work addresses the manufacturing, testing, and modeling of thermoplastic polyurethane (TPU) lattices. Here, a discussion of different unit cells found in the literature is presented, along with the based materials used by other authors and the tests performed in diverse studies, from which a necessity to improve the dynamic modeling of polymeric lattices was identified. This research focused on the experimental and numerical analysis of elastomeric lattices under quasi-static and dynamic compressive loads, using a Kelvin unit cell to design and build non-graded and spatially side-graded lattices. The base material behavior was fitted to an Ogden 3rd-order hyperelastic material model and used as input for the numerical work through finite element analysis (FEA). The quasi-static and impact loading FEA results from the lattices showed a good agreement with the experimental data, and by using the validated simulation methodology, additional special cases were simulated and compared. Finally, the information extracted from FEA allowed for a comparison of the performance of the lattice configurations considered herein.

2.
Adv Healthc Mater ; 7(16): e1800213, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29888441

RESUMEN

Additive manufacturing (AM) appears poised to provide novel pharmaceutical technology and controlled release systems, yet understanding the effects of processing and post-processing operations on pill design, quality, and performance remains a significant barrier. This paper reports a study of the relationship between programmed concentration profile and resultant temporal release profile using a 3D printed polypill system consisting of a Food and Drug Administration (FDA) approved excipient (Pluronic F-127) and therapeutically relevant dosages of three commonly used oral agents for treatment of type 2 diabetes (300-500 mg per pill). A dual-extrusion hydrogel microextrusion process enables the programming of three unique concentration profiles, including core-shell, multilayer, and gradient structures. Experimental and computational studies of diffusive mass transfer processes reveal that programmed concentration profiles are dynamic throughout both pill 3D printing and solidification. Spectrophotometric assays show that the temporal release profiles could be selectively programmed to exhibit delayed, pulsed, or constant profiles over a 5 h release period by utilizing the core-shell, multilayer, and gradient distributions, respectively. Ultimately, this work provides new insights into the mass transfer processes that affect design, quality, and performance of spatially graded controlled release systems, as well as demonstrating the potential to create disease-specific polypill technology with programmable temporal release profiles.


Asunto(s)
Impresión Tridimensional , Diabetes Mellitus Tipo 2 , Análisis de Elementos Finitos , Humanos , Cinética , Poloxámero/química
3.
J Mech Behav Biomed Mater ; 66: 28-36, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27829193

RESUMEN

The tendon-to-bone junction is a highly specialized tissue which dissipates stress concentrations between mechanically dissimilar tendon and bone. Upon injury, the local heterogeneities across this insertion are not regenerated, leading to poor functional outcomes such as formation of scar tissue at the insertion and re-failure rates exceeding 90%. Although current tissue engineering methods are moving towards the development of spatially-graded biomaterials to begin to address these injuries, significant opportunities remain to engineer the often complex local mechanical behavior of such biomaterials to enhance their bioactivity. Here, we describe the use of three-dimensional printing techniques to create customizable arrays of poly-lactic acid (PLA) fibers that can be incorporated into a collagen scaffold under development for tendon bone junction repair. Notably, we use additive manufacturing concepts to generate arrays of spatially-graded fibers from biodegradable PLA that are incorporated into collagen scaffolds to create a collagen-PLA composite. We demonstrate the ability to tune the mechanical performance of the fiber-scaffold composite at the bulk scale. We also demonstrate the incorporation of spatially-heterogeneous fiber designs to establish non-uniform local mechanical performance of the composite biomaterial under tensile load, a critical element in the design of multi-compartment biomaterials for tendon-to-bone regeneration applications. Together, this work highlights the capacity to use multi-scale composite biomaterials to control local and bulk mechanical properties, and provides key insights into design elements under consideration for mechanically competent, multi-tissue regeneration platforms.


Asunto(s)
Materiales Biocompatibles/química , Colágeno/fisiología , Poliésteres/química , Andamios del Tejido , Regeneración Ósea , Huesos/fisiología , Humanos , Ensayo de Materiales , Impresión Tridimensional , Tendones/fisiología , Resistencia a la Tracción , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA