Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 13(10)2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36292668

RESUMEN

Sox genes are an evolutionarily conserved family of transcription factors that play important roles in cellular differentiation and numerous complex developmental processes. In vertebrates, Sox proteins are required for cell fate decisions, morphogenesis, and the control of self-renewal in embryonic and adult stem cells. The Sox gene family has been well-studied in multiple species including humans but there has been scanty or no research into Bovidae. In this study, we conducted a detailed evolutionary analysis of this gene family in Bovidae, including their physicochemical properties, biological functions, and patterns of inheritance. We performed a genome-wide cataloguing procedure to explore the Sox gene family using multiple bioinformatics tools. Our analysis revealed a significant inheritance pattern including conserved motifs that are critical to the ability of Sox proteins to interact with the regulatory regions of target genes and orchestrate multiple developmental and physiological processes. Importantly, we report an important conserved motif, EFDQYL/ELDQYL, found in the SoxE and SoxF groups but not in other Sox groups. Further analysis revealed that this motif sequence accounts for the binding and transactivation potential of Sox proteins. The degree of protein-protein interaction showed significant interactions among Sox genes and related genes implicated in embryonic development and the regulation of cell differentiation. We conclude that the Sox gene family uniquely evolved in Bovidae, with a few exhibiting important motifs that drive several developmental and physiological processes.


Asunto(s)
Evolución Molecular , Genoma , Animales , Humanos , Filogenia , Factores de Transcripción/genética , Patrón de Herencia
2.
J Fish Biol ; 100(1): 15-24, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34553785

RESUMEN

Sox genes encode transcription factors with a high-mobility group (HMG) box, playing critical roles in the initiation and maintenance of a variety of developmental processes, such as sex determination and differentiation. In the present study, we identified 26 Sox genes in the genome of spinyhead croaker Collichthys lucidus (Richardson, 1844) with homology-based analysis of the HMG box. The transcriptome-based expression profiles revealed that the expression of the Sox gene in gonads began to differ between sexes when the body length was 2.74 ± 0.24 cm. At that time, three Sox genes (Sox11b, Sox8a and Sox19) were significantly upregulated, accompanied by the downregulation of 12 Sox genes in the ovary, and six Sox genes were temporarily significantly upregulated in the testis. Afterwards, the expression profile of Sox genes changed only with a small amplitude in both the ovary and testis. For adult tissues, huge differences were observed in the expression profiles of Sox genes between ovaries and testes, as well as small differences in somatic tissues between sexes. These results provide clues to further decipher the role of Sox genes in the processes of sex determination and differentiation in spinyhead croaker and other teleosts.


Asunto(s)
Perciformes , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Genoma , Gónadas , Masculino , Perciformes/genética
3.
Front Genet ; 11: 804, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849805

RESUMEN

The Sox gene family encoded transcription factors that played key roles in developmental processes in vertebrates. To further understand the evolutionary fate of the Sox gene family in teleosts, the Sox genes were comprehensively characterized in fish of different ploidy levels, including blunt snout bream (2n = 48, Megalobrama amblycephala, BSB), goldfish (2n = 100, Carassius auratus red var., 2nRCC), and autotetraploid C. auratus (4n = 200, 4nRCC). The 4nRCC, which derived from the whole genome duplication (WGD) of 2nRCC, were obtained through the distant hybridization of 2nRCC (♀) × BSB (♂). Compared with the 26 Sox genes in zebrafish (2n = 50, Danio rerio), 26, 47, and 92 putative Sox genes were identified in the BSB, 2nRCC, and 4nRCC genomes, respectively, and classified into seven subfamilies (B1, B2, C, D, E, F, and K). Comparative analyses showed that 89.36% (42/47) of Sox genes were duplicated in 2nRCC compared with those in BSB, while 97.83% (90/92) of Sox genes were duplicated in 4nRCC compared with those in 2nRCC, meaning the Sox gene family had undergone an expansion in BSB, 2nRCC, and 4nRCC, respectively, following polyploidization events. In addition, potential gene loss, genetic variations, and paternal parent SNP locus insertion occurred during the polyploidization events. Our data provided new insights into the evolution of the Sox gene family in polyploid vertebrates after several rounds of WGD events.

4.
Gene ; 763: 144956, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-32739586

RESUMEN

Sox transcription factors play essential roles in a variety of critical physiological processes. Still, members of the sox gene family have not yet been genome-wide identified in shrimps. In this study, a total of five members of the sox gene family were identified from the genome of Pacific white shrimp Litopenaeus vannamei and classified into three subgroups based on the conserved HMG-box domain. Among them, three belong to the SoxB subgroup (one in B1 and two in B2), one in the SoxC subgroup, and one in the SoxE subgroup. The five sox genes had different sex-biased expression in some tissues. Sox21, soxB1, and sox14 had a higher expression in ovary than in testis. In comparison, sox4 had a male-biased specific expression in the gonad, hepatopancreas, gill, and eyestalk. There was no difference in soxE gene expression between testis and ovary. During embryonic development, the expression level of three sox genes (soxB1, sox21, and soxE) was higher in gastrulation stage compared to previous stages, declined in limb bud stage and then increased in intramembrane nauplius stage; the expression of sox4 was detected in blastula stage and continued to increase in the following two stages and then surged in intramembrane nauplius stage; the highest expression of sox14 was in the fertilized egg stage, and the expression level decreased with the development of the embryo. These results suggest that the shrimp sox gene family may be involved in gametogenesis, tridermogenesis, and neurogenesis.


Asunto(s)
Proteínas de Artrópodos/genética , Penaeidae/genética , Factores de Transcripción SOX/genética , Animales , Proteínas de Artrópodos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Branquias/embriología , Branquias/metabolismo , Hepatopáncreas/embriología , Hepatopáncreas/metabolismo , Masculino , Especificidad de Órganos , Ovario/embriología , Ovario/metabolismo , Penaeidae/embriología , Factores de Transcripción SOX/metabolismo , Testículo/embriología , Testículo/metabolismo
5.
Gene Expr Patterns ; 36: 119112, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32259660

RESUMEN

Sox protein family is characterized by the presence of the conserved high-mobility group (HMG) box. Sox transcription factors are involved in diverse developmental process in animals, including sex-determination, organogenesis, embryogenesis, neurogenesis, and cell fate decision. In this study, 23 Sox genes were identified based on the Culter alburnus whole-genome sequence and categorized into six subfamilies according to the conserved HMG-box domain. The duplicates of four members revealed that Sox genes in the teleost fishes underwent significant expansion. Moreover, their expression pattern in gonad tissues were analyzed by RNA-seq and qRT-PCR, and Sox9b was determined as a key gene that was essential for testis development. This current study will provide new insight into the role of Sox gene family in fish sex determination and differentiation.


Asunto(s)
Cyprinidae/genética , Cyprinidae/metabolismo , Dominios HMG-Box/genética , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Secuencia de Aminoácidos , Animales , Desarrollo Embrionario , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , RNA-Seq , Procesos de Determinación del Sexo , Transcriptoma , Secuenciación Completa del Genoma
6.
Artículo en Inglés | MEDLINE | ID: mdl-31923463

RESUMEN

SOX transcription factors play an irreplaceable role in biological developmental processes. Sox genes have been identified in a wide variety of species; however, their identification and functional analysis in the genome of the Chinese soft-shell turtle (Pelodiscus sinensis) have not been performed. In the present study, the Chinese soft-shell turtle genome was found to contain 17 Sox genes, which were categorized into seven groups according to their phylogenetic relationships. Gene structure and protein motif analysis of the Sox genes showed that within the same phylogenetic group, their exon-intron number and motif structure of the Sox family were relatively conserved, but diverged in the comparison between different groups. Sexual dimorphism expression analysis for the Sox genes displayed that Sox8 and Sox9 were upregulated in the testis, while Sox3, Sox7, Sox11, and Sox13 were upregulated in the ovary. A correlation network analysis of SOX transcription factors with their target genes analysis showed that Sox3 correlated negatively with Sox9 and gata4. Sox11 and Sox7 correlated negatively with gata4. Sox8 and Sox9 correlated positively with gata4. Therefore, the genome-wide identification and functional analysis of the Sox gene family will be useful to further reveal the functions of Sox genes in the Chinese soft-shell turtle.


Asunto(s)
ARN Mensajero/genética , Factores de Transcripción SOX/genética , Tortugas/genética , Secuencia de Aminoácidos , Animales , Femenino , Perfilación de la Expresión Génica , Genoma , Masculino , Filogenia , ARN Mensajero/metabolismo , Factores de Transcripción SOX/metabolismo , Homología de Secuencia de Aminoácido , Tortugas/metabolismo
7.
PeerJ ; 7: e7770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31660260

RESUMEN

The Asian clam, Corbicula fluminea, is a commonly consumed small freshwater bivalve in East Asia. However, available genetic information of this clam is still limited. In this study, the transcriptome of female C. fluminea was sequenced using the Illumina HiSeq 2500 platform. A total of 89,563 unigenes were assembled with an average length of 859 bp, and 36.7% of them were successfully annotated. Six members of Sox gene family namely SoxB1, SoxB2, SoxC, SoxD, SoxE and SoxF were identified. Based on these genes, the divergence time of C. fluminea was estimated to be around  476 million years ago. Furthermore, a total of 3,117 microsatellites were detected with a distribution density of 1:12,960 bp. Fifty of these microsatellites were randomly selected for validation, and 45 of them were successfully amplified with 31 polymorphic ones. The data obtained in this study will provide useful information for future genetic and genomic studies in C. fluminea.

8.
DNA Cell Biol ; 38(10): 1100-1111, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31418589

RESUMEN

Members of the Sox gene family play crucial roles during reproduction and development, but their genome-wide identification has not yet been performed in large yellow croaker, Larimichthys crocea. In this study, a total of 26 members of the Sox gene family were identified from the genome of large yellow croaker and classified into seven subgroups based on the conserved HMG-box domain they contain. Among the identified Sox gene family members, eight belonged to the SoxB subgroup (five in B1 and three in B2), four belonged to the SoxC subgroup, four belonged to the SoxD subgroup, six belonged to the SoxE subgroup, three belonged to the SoxF subgroup, and one belonged to the SoxK subgroup. During evolution, members of the SoxE subgroup (Sox8, Sox9, Sox10), Sox1, Sox4, Sox6, and Sox11 evolved into two copies, which may be a result of teleost-specific whole-genome duplication. Sox genes were distributed unevenly across 15 chromosomes. The number of introns in large yellow croaker Sox genes varied from 0 to 14. Results of the expression profile during embryogenesis revealed that most of the members of the Sox gene family had lower expression, except several Sox genes, and expression patterns also differed among each Sox gene group and duplicated gene. This study systematically characterized and analyzed the Sox gene family in large yellow croaker and provided new insights into its function during embryogenesis.


Asunto(s)
Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Perciformes/genética , Filogenia , Factores de Transcripción SOXB1/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Mapeo Cromosómico , Biología Computacional , Embrión no Mamífero , Desarrollo Embrionario , Exones , Proteínas de Peces/clasificación , Duplicación de Gen , Intrones , Familia de Multigenes , Perciformes/clasificación , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Factores de Transcripción SOXB1/clasificación , Alineación de Secuencia , Homología de Secuencia de Aminoácido
9.
Sex Dev ; 13(5-6): 221-227, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32535607

RESUMEN

Ovotesticular difference of sex development (OT DSD) is a rare genetic disorder with an incidence of about 1/100,000 live births. The majority of OT DSD patients show a 46,XX karyotype, others may have 46,XX/46,XY chimerism or exhibit various mosaic sex chromosome combinations, and less commonly they may have a 46,XY karyotype. The aim of this work is to report the clinical, pathological, and karyotypic variations in OT DSD patients diagnosed among a large cohort of DSD patients. The study included 10 patients thoroughly evaluated for clinical, genital, and hormonal abnormalities and subjected to imaging studies, laparoscopy with gonadal biopsy, karyotype, and FISH analysis. The current study revealed a greater percentage of mosaic cell line combinations than previously reported and showed variable cytogenetic abnormalities, including the rare isodicentric (Y)(p11.32) abnormality and X;Y translocation. The study also revealed a unique pattern of gonadal type and combination frequencies. To our knowledge, this is the first study on OT DSD patients among a large cohort of DSD patients in Egypt and the Middle East.

10.
Artículo en Inglés | MEDLINE | ID: mdl-29906772

RESUMEN

The Sox gene family has been systematically characterized in some fish species but not in catfish Ictalurus punctatus. In this study, 25 Sox genes were identified in the channel catfish genome and classified into seven families based on their conserved domains as follows: eight genes in SoxB group (six in SoxB1 subgroup and two in SoxB2 subgroup); five genes in SoxC group; three genes in SoxD and SoxF groups; four genes in SoxE group; and one gene in SoxH and SoxK groups. The mammalian Sox groups SoxA, G, I, and J were not present in catfish. The number of introns in channel catfish Sox genes varied from zero to 13. Sox genes were distributed unevenly across 17 chromosomes. Five members of the ancestral vertebrate Sox genes (Sox1, Sox4, Sox9, Sox11 and Sox19) experienced teleost-specific whole genome duplication during evolution, and now have two copies on different chromosomes. Expression profiles analyses indicated that the accumulation of Sox genes was associated with different tissues, and the expression pattern also differed among each Sox gene group and duplicated gene. This study constitutes a comprehensive overview of the Sox gene family in channel catfish and provides new insights into the evolution of this gene family.


Asunto(s)
Proteínas de Peces/genética , Ictaluridae/genética , Filogenia , Factores de Transcripción SOX/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Evolución Molecular , Proteínas de Peces/química , Duplicación de Gen , Genoma , Factores de Transcripción SOX/química , Alineación de Secuencia
11.
Oncotarget ; 8(40): 68758-68768, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978154

RESUMEN

Extensive genomic profiling for endometrioid endometrial carcinoma (EEC) has pointed to genes and pathways important in uterine development as critical mediators of endometrial tumorigenesis. SOX17 is a developmental transcription factor necessary for proper endoderm formation that has been implicated as a tumor suppressor and shown to modulate WNT signaling. SOX17 mutation analysis in 539 primary EECs revealed frequent missense and frameshift mutations with an overall 11.5% mutation rate. More than half the mutations identified were frameshifts (32 of 62), and the hotspot missense changes, p.Ala96Gly and p.Ser403Ile, were seen in 14 tumors. None of the cases with a mutation had a second SOX17 mutation or evidence of allelic loss. Immunofluorescence microscopy performed on primary samples showed that there were no changes in SOX17 protein expression associated with mutation. Low/absent SOX17 staining was significantly associated with advanced stage, high tumor grade and reduced recurrence-free survival. Functional assessment of the two hotspot missense mutations and three representative frameshift mutations showed that SOX17-A96G and SOX17-S403I have transcriptional activities similar to SOX17 wild-type (WT), whereas none of the frameshift mutant proteins showed transcriptional activity. Forced expression of SOX17-WT, -A96G or -S403I in EC cell lines moderately increased ß-catenin mediated transcription, which contrasts with previous data showing SOX17 is an inhibitor of TCF/ß-catenin signaling. The proliferation of EC cell lines was expectedly reduced by transfection with SOX17-WT, and further reduced by SOX17-A96G and SOX17-S403I. These data implicate SOX17 mutation as a selected event in EEC, with clear differences between the missense and frameshift mutations.

12.
Appl Microbiol Biotechnol ; 101(5): 2079-2092, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27966049

RESUMEN

The sulfur oxidization (Sox) system is the central sulfur oxidization pathway of phototrophic and chemotrophic sulfur-oxidizing bacteria. Regulation and function of the Sox system in the chemotrophic Paracoccus pantotrophus has been elucidated; however, to date, no information is available on the regulation of this system in the chemolithotrophic Acidithiobacillus caldus, which is widely utilized in bioleaching. We described the novel tspSR-sox-like clusters in A. caldus and other chemolithotrophic sulfur-oxidizing bacteria containing Sox systems. The highly homologous σ54-dependent two-component signaling system (TspS/R), upstream of the sox operons in these novel clusters, was identified by phylogenetic analyses. A typical σ54-dependent promoter, P1, was identified upstream of soxX-I in the sox-I cluster of A. caldus MTH-04. The transcriptional start site (G) and the -12/-24 regions (GC/GG) of P1 were determined by rapid amplification of cDNA ends (5'RACE), and the upstream activator sequences (UASs; TGTCCCAAATGGGACA) were confirmed by electrophoretic mobility shift assays (EMSAs) in vitro and by UAS-probe-plasmids assays in vivo. Sequence analysis of promoter regions in tspSR-sox-like clusters revealed that there were similar σ54-dependent promoters upstream of the soxX genes. Based on our results, we proposed a TspSR-mediated signal transduction and transcriptional regulation pathway for the Sox system in A. caldus. The regulation of σ54-dependent two-component systems (TCSs) for Sox pathways were explained for the first time in A. caldus, A. thiooxidans, T. tepidarius, and T. denitrificans, indicating the significance of modulating the sulfur oxidization in these chemolithotrophic sulfur oxidizers.


Asunto(s)
Acidithiobacillus/genética , Regulación Bacteriana de la Expresión Génica , ARN Polimerasa Sigma 54/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Azufre/metabolismo , Acidithiobacillus/metabolismo , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Oxidación-Reducción , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Activación Transcripcional/genética
13.
Int J Mol Sci ; 17(3): 270, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26907269

RESUMEN

The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.


Asunto(s)
Proteínas de Peces/metabolismo , Factores de Transcripción SOX/metabolismo , Tilapia/genética , Transcriptoma , Animales , Encéfalo/metabolismo , Femenino , Proteínas de Peces/genética , Genoma , Gónadas/metabolismo , Masculino , Factores de Transcripción SOX/genética , Tilapia/crecimiento & desarrollo , Tilapia/metabolismo
14.
Eur J Cell Biol ; 94(12): 547-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26340821

RESUMEN

In metazoa, SOX family transcription factors play many diverse roles. In vertebrate, they are well-known regulators of numerous developmental processes. Wide-ranging studies have demonstrated the co-expression of SOX proteins in various developing tissues and that they occur in an overlapping manner and show functional redundancy. In particular, studies focusing on the HMG box of SOX proteins have revealed that the HMG box regulates DNA-binding properties, and mediates both the nucleocytoplasmic shuttling of SOX proteins and their physical interactions with partner proteins. Posttranslational modifications are further implicated in the regulation of the transcriptional activities of SOX proteins. In this review, we discuss the underlying molecular mechanisms involved in the SOX-partner factor interactions and the functional modes of SOX-partner complexes during development. We particularly emphasize the representative roles of the SOX group proteins in major tissues during developmental and physiological processes.


Asunto(s)
Factores de Transcripción SOX/fisiología , Transporte Activo de Núcleo Celular , Animales , Sistema Cardiovascular/embriología , Sistema Cardiovascular/crecimiento & desarrollo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Unión Proteica , Procesamiento Proteico-Postraduccional
15.
Cryobiology ; 71(1): 1-11, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26123176

RESUMEN

Methanol is a widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however little is known about its effect at the molecular level. This study investigated the effect of methanol on sox gene and protein expression in zebrafish embryos (50% epiboly) when they were chilled for 3 h and subsequently warmed and cultured to the hatching stages. Initial experiments were carried out to evaluate the chilling tolerance of 50% epiboly embryos which showed no significant differences in hatching rates for up to 6 h chilling in methanol (0.2-, 0.5- and 1 M). Subsequent experiments in embryos that had been chilled for 3 h in 1 M methanol and warmed and cultured up to the hatching stages found that sox2 and sox3 gene expression were increased significantly in hatched embryos that had been chilled compared to non-chilled controls. Sox19a gene expression also remained above control levels in the chilled embryos at all developmental stages tested. Whilst stable sox2 protein expression was observed between non-chilled controls and embryos chilled for 3 h with or without MeOH, a surge in sox19a protein expression was observed in embryos chilled for 3 h in the presence of 1 M MeOH compared to non-chilled controls and then returned to control levels by the hatching stage. The protective effect of MeOH was increased with increasing concentrations. Effect of methanol at molecular level during chilling was reported here first time which could add new parameter in selection of cryoprotectant while designing cryopreservation protocol.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Embrión no Mamífero/efectos de los fármacos , Metanol/farmacología , Factores de Transcripción SOXB1/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Femenino , Congelación , Expresión Génica/efectos de los fármacos , Masculino , Factores de Transcripción SOXB1/genética
16.
Am J Med Genet A ; 167A(11): 2548-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26111154

RESUMEN

The SOX5 haploinsufficiency syndrome is characterized by global developmental delay, intellectual disability, language and motor impairment, and distinct facial features. The smallest deletion encompassed only one gene, SOX5 (OMIM 604975), indicating that haploinsufficiency of SOX5 contributes to neuro developmental delay. Although multiple deletions of the SOX5 gene have been reported in patients, none are strictly intragenic point mutations. Here, we report the identification of a de novo loss of function variant in SOX5 identified through whole exome sequencing. The proband presented with moderate developmental delay, bilateral optic atrophy, mildly dysmorphic features, and scoliosis, which correlates with the previously-described SOX5-associated phenotype. These results broaden the diagnostic spectrum of SOX5-related intellectual disability. Furthermore it highlights the utility of exome sequencing in establishing an etiological basis in clinically and genetically heterogeneous conditions such as intellectual disability.


Asunto(s)
Exoma/genética , Discapacidad Intelectual/genética , Factores de Transcripción SOXD/genética , Análisis de Secuencia de ADN , Adolescente , Adulto , Secuencia de Bases , Codón sin Sentido/genética , Exones/genética , Femenino , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA