Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275717

RESUMEN

To detect damage in mechanical structures, acoustic emission (AE) inspection is considered as a powerful tool. Generally, the classical acoustic emission detection method uses a sparse sensor array to identify damage and its location. It often depends on a pre-defined wave velocity and it is difficult to yield a high localization accuracy for complicated structures using this method. In this paper, the passive guided wave phased array method, a dense sensor array method, is studied, aiming to obtain better AE localization accuracy in aluminum thin plates. Specifically, the proposed method uses a cross-shaped phased array enhanced with four additional far-end sensors for AE source localization. The proposed two-step method first calculates the real-time velocity and the polar angle of the AE source using the phased array algorithm, and then solves the location of the AE source with the additional far-end sensor. Both numerical and physical experiments on an aluminum flat panel are carried out to validate the proposed method. It is found that using the cross-shaped guided wave phased array method with enhanced far-end sensors can localize the coordinates of the AE source accurately without knowing the wave velocity in advance. The proposed method is also extended to a stiffened thin-walled structure with high localization accuracy, which validates its AE source localization ability for complicated structures. Finally, the influences of cross-shaped phased array element number and the time window length on the proposed method are discussed in detail.

2.
Ear Nose Throat J ; : 1455613241279718, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248506

RESUMEN

Objectives: It has been proven that patients with unilateral conductive hearing loss (UCHL) may encounter typical problems associated with asymmetric hearing, especially in challenging listening environments. In this study, we aimed to determine how UCHL affects speech recognition under multisource competing environments and the ability of sound source localization, as well as whether assistance with a bone conduction device (BCD) can confer hearing benefits in such listening tasks. Design: Acquired UCHL was simulated using an earplug combined with an earmuff in 10 listeners (mean age: 29.9 ± 4.77 years) with bilateral normal hearing (NH), and a within-subject repeated-measures design was used to compare hearing results among three listening conditions: NH (both ears open, C1), unilateral plug (UP) (simulated UCHL, C2), and UP + BCD (simulated UCHL aided with a BCD, C3). The speech reception threshold (SRT) of summation, squelch, and head shadow (HS) effects and the mean absolute error of sound source localization were used as markers for binaural hearing abilities. Results: BCD assistance (C3) improved the summation and HS effects in all listeners with simulated UCHL, resulting in a lower (i.e., better) SRT than that observed in C2; however, no significant differences in squelch effects were observed between C2 and C3. Notably, most listeners exhibited more accurate sound source localization in C3 than in C2. Further, BCD assistance mainly improved localization accuracy when the noise stimuli were presented at low intensities and on the hearing-impaired (plugged) side, suggesting that the benefits of BCD for sound localization are not based on the reacquisition of binaural processing. Conclusions: The current results have clinical implications for the promotion of BCDs in patients with UCHL, especially those with acquired UCHL who are unable to undergo surgery.

3.
J Affect Disord ; 365: 406-416, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168167

RESUMEN

BACKGROUND: Major Depressive Disorder (MDD) may exhibit impairments in cognitive flexibility. This study investigated whether the cognitive flexibility deficits in MDD are evident across general stimuli or specific to emotional stimuli, while exploring the underlying neuropsychological mechanism. METHODS: A total of 41 MDD patients and 42 healthy controls (HCs) were recruited. Event-related potentials (ERPs) were recorded when participants performed a non-emotional and an emotional task switching paradigm (N-ETSP and ETSP), both of which assessed cognitive flexibility. Microstate and source localization analysis were applied to reflect brain activity among different brain areas during task switching. RESULTS: In the N-ETSP, MDD group showed larger P3 difference wave (Pd3) amplitudes and longer P2 difference wave (Pd2) latencies. In the ETSP, MDD group displayed smaller N2 difference wave (Nd2) amplitudes and larger Pd3 amplitudes. The comparison of sLORETA images of emotional switch task and emotional repeat task showed that MDD group had increased activation in the precentral gyrus in microstate2 of the P2 time window and had reduced activation in the middle occipital gyrus in microstate3 of the N2 time window. LIMITATIONS: The cross-sectional design failed to capture dynamic changes in cognitive flexibility in MDD. CONCLUSIONS: MDD demonstrated impaired cognitive flexibility respond to both non-emotional and emotional stimuli, with greater impairment for negative emotional stimuli. These deficits are evident in abnormal ERPs component during the early attention stage and the later task preparation stage. Furthermore, abnormal emotional switching cost in MDD appears to be related to early abnormal perceptual control in the parietal-occipital cortex.


Asunto(s)
Trastorno Depresivo Mayor , Electroencefalografía , Emociones , Potenciales Evocados , Humanos , Trastorno Depresivo Mayor/fisiopatología , Masculino , Femenino , Adulto , Potenciales Evocados/fisiología , Emociones/fisiología , Estudios Transversales , Adulto Joven , Cognición/fisiología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Pruebas Neuropsicológicas , Tiempo de Reacción/fisiología
4.
Front Hum Neurosci ; 18: 1384330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188406

RESUMEN

Depressive states in both healthy individuals and those with major depressive disorder exhibit differences primarily in symptom severity rather than symptom type, suggesting that there is a spectrum of depressive symptoms. The increasing prevalence of mild depression carries lifelong implications, emphasizing its clinical and social significance, which parallels that of moderate depression. Early intervention and psychotherapy have shown effective outcomes in subthreshold depression. Electroencephalography serves as a non-invasive, powerful tool in depression research, with many studies employing it to discover biomarkers and explore underlying mechanisms for the identification and diagnosis of depression. However, the efficacy of these biomarkers in distinguishing various depressive states in healthy individuals and in understanding the associated mechanisms remains uncertain. In our study, we examined the power spectrum density and the region-based phase-locking value in healthy individuals with various depressive states during their resting state. We found significant differences in neural activity, even among healthy individuals. Participants were categorized into high, middle, and low depressive state groups based on their response to a questionnaire, and eyes-open resting-state electroencephalography was conducted. We observed significant differences among the different depressive state groups in theta- and beta-band power, as well as correlations in the theta-beta ratio in the frontal lobe and phase-locking connections in the frontal, parietal, and temporal lobes. Standardized low-resolution electromagnetic tomography analysis for source localization comparing the differences in resting-state networks among the three depressive state groups showed significant differences in the frontal and temporal lobes. We anticipate that our study will contribute to the development of effective biomarkers for the early detection and prevention of depression.

5.
Appl Radiat Isot ; 212: 111475, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39167984

RESUMEN

In this paper, it is proposed to locate multiple unknown radioactive sources within a certain time limit through particle filtering and Voronoi partitioning. Firstly, with each robot as a Voronoi centroid, the entire area is partitioned. Then, the robots conduct source search concurrently through particle filtering. When all the robots complete the process of one-particle filtering, the iteration ends and the next one begins until the search for the radioactive source is terminated. Finally, experiment is conducted to demonstrate the efficiency and accuracy of the proposed method.

6.
Neuroimage ; 299: 120802, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173694

RESUMEN

Electroencephalography (EEG) or Magnetoencephalography (MEG) source imaging aims to estimate the underlying activated brain sources to explain the observed EEG/MEG recordings. Solving the inverse problem of EEG/MEG Source Imaging (ESI) is challenging due to its ill-posed nature. To achieve a unique solution, it is essential to apply sophisticated regularization constraints to restrict the solution space. Traditionally, the design of regularization terms is based on assumptions about the spatiotemporal structure of the underlying source dynamics. In this paper, we propose a novel paradigm for ESI via an Explainable Deep Learning framework, termed as XDL-ESI, which connects the iterative optimization algorithm with deep learning architecture by unfolding the iterative updates with neural network modules. The proposed framework has the advantages of (1) establishing a data-driven approach to model the source solution structure instead of using hand-crafted regularization terms; (2) improving the robustness of source solutions by introducing a topological loss that leverages the geometric spatial information applying varying penalties on distinct localization errors; (3) improving the reconstruction efficiency and interpretability as it inherits the advantages from both the iterative optimization algorithms (interpretability) and deep learning approaches (function approximation). The proposed XDL-ESI framework provides an efficient, accurate, and interpretable paradigm to solve the ESI inverse problem with satisfactory performance in both simulated data and real clinical data. Specially, this approach is further validated using simultaneous EEG and intracranial EEG (iEEG).

7.
Sensors (Basel) ; 24(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39205033

RESUMEN

Sound Event Detection and Localization (SELD) is a comprehensive task that aims to solve the subtasks of Sound Event Detection (SED) and Sound Source Localization (SSL) simultaneously. The task of SELD lies in the need to solve both sound recognition and spatial localization problems, and different categories of sound events may overlap in time and space, making it more difficult for the model to distinguish between different events occurring at the same time and to locate the sound source. In this study, the Dual-conv Coordinate Attention Module (DCAM) combines dual convolutional blocks and Coordinate Attention, and based on this, the network architecture based on the two-stage strategy is improved to form the SELD-oriented Two-Stage Dual-conv Coordinate Attention Model (TDCAM) for SELD. TDCAM draws on the concepts of Visual Geometry Group (VGG) networks and Coordinate Attention to effectively capture critical local information by focusing on the coordinate space information of the feature map and dealing with the relationship between the feature map channels to enhance the feature selection capability of the model. To address the limitation of a single-layer Bi-directional Gated Recurrent Unit (Bi-GRU) in the two-stage network in terms of timing processing, we add to the structure of the two-layer Bi-GRU and introduce the data enhancement techniques of the frequency mask and time mask to improve the modeling and generalization ability of the model for timing features. Through experimental validation on the TAU Spatial Sound Events 2019 development dataset, our approach significantly improves the performance of SELD compared to the two-stage network baseline model. Furthermore, the effectiveness of DCAM and the two-layer Bi-GRU structure is confirmed by performing ablation experiments.

8.
Phys Med Biol ; 69(16)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39008979

RESUMEN

Objective.3D-localization of gamma sources has the potential to improve the outcome of radio-guided surgery. The goal of this paper is to analyze the localization accuracy for point-like sources with a single coded aperture camera.Approach.We both simulated and measured a point-like241Am source at 17 positions distributed within the field of view of an experimental gamma camera. The setup includes a0.11mmthick Tungsten sheet with a MURA mask of rank 31 and pinholes of0.08mmin diameter and a detector based on the photon counting readout circuit Timepix3. Two methods, namely an iterative search including either a symmetric Gaussian fitting or an exponentially modified Gaussian fitting (EMG) and a center of mass method were compared to estimate the 3D source position.Main results.Considering the decreasing axial resolution with source-to-mask distance, the EMG improved the results by a factor of 4 compared to the Gaussian fitting based on the simulated data. Overall, we obtained a mean localization error of0.77mmon the simulated and2.64mmon the experimental data in the imaging range of20-100mm.Significance.This paper shows that despite the low axial resolution, point-like sources in the nearfield can be localized as well as with more sophisticated imaging devices such as stereo cameras. The influence of the source size and the photon count on the imaging and localization accuracy remains an important issue for further research.


Asunto(s)
Cámaras gamma , Imagenología Tridimensional , Rayos gamma
9.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066093

RESUMEN

Acoustic cameras (ACs) have become very popular in the last decade as an increasing number of applications in environmental acoustics are observed, which are mainly used to display the points of greatest noise emission of one or more sound sources. The results obtained are not yet certifiable because the beamforming algorithms or hardware behave differently under different measurement conditions, but at present, not enough studies have been dedicated to clarify the issues. The present study aims to provide a methodology to extract analytical features from sound maps obtained with ACs, which are generally only visual information. Based on the inputs obtained through a specific measurement campaign carried out with an AC and a known sound source in free field conditions, the present work elaborated a methodology for gathering the coordinates of the maximum emission point on screen, its distance from the real position of the source and the uncertainty associated with this position. The results obtained with the proposed method can be compared, thus acting as a basis for future comparison studies among calculations made with different beamforming algorithms or data gathered with different ACs in all real case scenarios. The method can be applicable to any other sector interested in gathering data from intensity maps not related to sound.

10.
Comput Biol Med ; 178: 108704, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852398

RESUMEN

INTRODUCTION: High-density electroencephalography (hdEEG) is a technique used for the characterization of the neural activity and connectivity in the human brain. The analysis of EEG data involves several steps, including signal pre-processing, head modelling, source localization and activity/connectivity quantification. Visual check of the analysis steps is often necessary, making the process time- and resource-consuming and, therefore, not feasible for large datasets. FINDINGS: Here we present the Noninvasive Electrophysiology Toolbox (NET), an open-source software for large-scale analysis of hdEEG data, running on the cross-platform MATLAB environment. NET combines all the tools required for a complete hdEEG analysis workflow, from raw signals to final measured values. By relying on reconstructed neural signals in the brain, NET can perform traditional analyses of time-locked neural responses, as well as more advanced functional connectivity and brain mapping analyses. The extracted quantitative neural data can be exported to provide broad compatibility with other software. CONCLUSIONS: NET is freely available (https://github.com/bind-group-kul/net) under the GNU public license for non-commercial use and open-source development, together with a graphical user interface (GUI) and a user tutorial. While NET can be used interactively with the GUI, it is primarily aimed at unsupervised automation to process large hdEEG datasets efficiently. Its implementation creates indeed a highly customizable program suitable for analysis automation and tight integration into existing workflows.


Asunto(s)
Encéfalo , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Humanos , Electroencefalografía/métodos , Encéfalo/fisiología , Red Nerviosa/fisiología , Mapeo Encefálico/métodos
11.
J Neurosurg ; : 1-9, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38788232

RESUMEN

OBJECTIVE: Interictal epileptiform discharges (IEDs) are intermittent high-amplitude electrical signals that occur between seizures. They have been shown to propagate through the brain as traveling waves when recorded with epicortical grid-type electrodes and small penetrating microelectrode arrays. However, little work has been done to translate experimental IED analyses to more clinically relevant platforms such as stereoelectroencephalography (SEEG). In this pilot study, the authors aimed to define a computational method to identify and characterize IEDs recorded from clinical SEEG electrodes and leverage the directionality of IED traveling waves to localize the seizure onset zone (SOZ). METHODS: Continuous SEEG recordings from 15 patients with medically refractory epilepsy were collected, and IEDs were detected by identifying overlapping peaks of a minimum prominence. IED pathways of propagation were defined and compared to the SOZ location determined by a clinical neurologist based on the ictal recordings. For further analysis of the IED pathways of propagation, IED detections were divided into triplets, defined as a set of 3 consecutive contacts within the same IED detection. Univariate and multivariate linear regression models were employed to associate IED characteristics with colocalization to the SOZ. RESULTS: A median (range) of 22.6 (4.4-183.9) IEDs were detected per hour from 15 patients over a mean of 23.2 hours of recording. Depending on the definition of the SOZ, a median (range) of 20.8% (0.0%-54.5%) to 62.1% (19.2%-99.4%) of IEDs per patient traversed the SOZ. IEDs passing through the SOZ followed discrete pathways that had little overlap with those of the IEDs passing outside the SOZ. Contact triplets that occurred more than once were significantly more likely to be detected in an IED passing through the SOZ (p < 0.001). Per our multivariate model, patients with a greater proportion of IED traveling waves had a significantly greater proportion of IEDs that localized to the SOZ (ß = 0.64, 95% CI 0.01-1.27, p = 0.045). CONCLUSIONS: By using computational methods, IEDs can be meaningfully detected from clinical-grade SEEG recordings of patients with epilepsy. In some patients, a high proportion of IEDs are traveling waves according to multiple metrics that colocalize to the SOZ, offering hope that IED detection, with further refinement, could serve as an alternative method for SOZ localization.

12.
J Neural Eng ; 21(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38722315

RESUMEN

Objective.Electroencephalography (EEG) has been widely used in motor imagery (MI) research by virtue of its high temporal resolution and low cost, but its low spatial resolution is still a major criticism. The EEG source localization (ESL) algorithm effectively improves the spatial resolution of the signal by inverting the scalp EEG to extrapolate the cortical source signal, thus enhancing the classification accuracy.Approach.To address the problem of poor spatial resolution of EEG signals, this paper proposed a sub-band source chaotic entropy feature extraction method based on sub-band ESL. Firstly, the preprocessed EEG signals were filtered into 8 sub-bands. Each sub-band signal was source localized respectively to reveal the activation patterns of specific frequency bands of the EEG signals and the activities of specific brain regions in the MI task. Then, approximate entropy, fuzzy entropy and permutation entropy were extracted from the source signal as features to quantify the complexity and randomness of the signal. Finally, the classification of different MI tasks was achieved using support vector machine.Main result.The proposed method was validated on two MI public datasets (brain-computer interface (BCI) competition III IVa, BCI competition IV 2a) and the results showed that the classification accuracies were higher than the existing methods.Significance.The spatial resolution of the signal was improved by sub-band EEG localization in the paper, which provided a new idea for EEG MI research.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Entropía , Imaginación , Electroencefalografía/métodos , Humanos , Imaginación/fisiología , Dinámicas no Lineales , Algoritmos , Máquina de Vectores de Soporte , Movimiento/fisiología , Reproducibilidad de los Resultados
13.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732807

RESUMEN

To address the challenge of accurately locating unmanned aerial vehicles (UAVs) in situations where radar tracking is not feasible and visual observation is difficult, this paper proposes an innovative acoustic source localization method based on improved Empirical Mode Decomposition (EMD) within an adaptive frequency window. In this study, the collected flight signals of UAVs undergo smoothing filtering. Additionally, Robust Empirical Mode Decomposition (REMD) is applied to decompose the signals into Intrinsic Mode Function (IMF) components for spectrum analysis. We introduce a sliding frequency window with adjustable bandwidth, which is automatically determined using a Grey Wolf Optimizer (GWO) with a sliding index. This window is used to lock and extract specific frequencies from the IMFs. Based on predefined criteria, the extracted IMF components are reconstructed, and trigger signal times are analyzed and recorded from these reconstructed IMFs. The time differences between sensor receptions are then calculated. Furthermore, this study introduces the Chan-Taylor localization algorithm based on weighted least squares. This advanced algorithm takes sensor time delay parameters as input and solves a set of nonlinear equations to determine the target's location. Simulations and real-world signal tests are used to validate the robustness and performance of the proposed method. The results indicate that the localization error remains below 5% within a 15 m × 15 m measurement area. This provides an efficient and real-time method for detecting the location of small UAVs.

14.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732997

RESUMEN

The accuracy of passive hyperbolic localization applications using Time Difference of Arrival (TDOA) measurements can be severely compromised in non-line-of-sight (NLOS) situations. Consensus functions have been successfully used to provide robust and accurate location estimates in such challenging situations. In this paper, a fast branch-and-bound computational method for finding the global maximum of consensus functions is proposed and the global convergence property of the algorithm is mathematically proven. The performance of the method is illustrated by simulation experiments and real measurements.

15.
Front Neurosci ; 18: 1368172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817913

RESUMEN

Introduction: Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technique that improves human cognition. The effects of tPBM of the right forehead on neurophysiological activity have been previously investigated using EEG in sensor space. However, the spatial resolution of these studies is limited. Magnetoencephalography (MEG) is known to facilitate a higher spatial resolution of brain source images. This study aimed to image post-tPBM effects in brain space based on both MEG and EEG measurements across the entire human brain. Methods: MEG and EEG scans were concurrently acquired for 6 min before and after 8-min of tPBM delivered using a 1,064-nm laser on the right forehead of 25 healthy participants. Group-level changes in both the MEG and EEG power spectral density with respect to the baseline (pre-tPBM) were quantified and averaged within each frequency band in the sensor space. Constrained modeling was used to generate MEG and EEG source images of post-tPBM, followed by cluster-based permutation analysis for family wise error correction (p < 0.05). Results: The 8-min tPBM enabled significant increases in alpha (8-12 Hz) and beta (13-30 Hz) powers across multiple cortical regions, as confirmed by MEG and EEG source images. Moreover, tPBM-enhanced oscillations in the beta band were located not only near the stimulation site but also in remote cerebral regions, including the frontal, parietal, and occipital regions, particularly on the ipsilateral side. Discussion: MEG and EEG results shown in this study demonstrated that tPBM modulates neurophysiological activity locally and in distant cortical areas. The EEG topographies reported in this study were consistent with previous observations. This study is the first to present MEG and EEG evidence of the electrophysiological effects of tPBM in the brain space, supporting the potential utility of tPBM in treating neurological diseases through the modulation of brain oscillations.

16.
Front Hum Neurosci ; 18: 1371648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736529

RESUMEN

Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.

17.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702194

RESUMEN

Elicited upon violation of regularity in stimulus presentation, mismatch negativity (MMN) reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory error detection whereas P300 is associated with cognitive processes such as updating of the working memory. To date, there has been extensive research on the roles of MMN and P300 individually, because of their potential to be used as clinical markers of consciousness and attention, respectively. Here, we intend to explore with an unsupervised and rigorous source estimation approach, the underlying cortical generators of MMN and P300, in the context of prediction error propagation along the hierarchies of brain information processing in healthy human participants. The existing methods of characterizing the two ERPs involve only approximate estimations of their amplitudes and latencies based on specific sensors of interest. Our objective is twofold: first, we introduce a novel data-driven unsupervised approach to compute latencies and amplitude of ERP components accurately on an individual-subject basis and reconfirm earlier findings. Second, we demonstrate that in multisensory environments, MMN generators seem to reflect a significant overlap of "modality-specific" and "modality-independent" information processing while P300 generators mark a shift toward completely "modality-independent" processing. Advancing earlier understanding that multisensory contexts speed up early sensory processing, our study reveals that temporal facilitation extends to even the later components of prediction error processing, using EEG experiments. Such knowledge can be of value to clinical research for characterizing the key developmental stages of lifespan aging, schizophrenia, and depression.


Asunto(s)
Electroencefalografía , Potenciales Relacionados con Evento P300 , Humanos , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Adulto Joven , Potenciales Relacionados con Evento P300/fisiología , Percepción Auditiva/fisiología , Corteza Cerebral/fisiología , Estimulación Acústica/métodos , Potenciales Evocados/fisiología
18.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610358

RESUMEN

A comprehensive analysis and simulation of two memristor-based neuromorphic architectures for nuclear radiation detection is presented. Both scalable architectures retrofit a locally competitive algorithm to solve overcomplete sparse approximation problems by harnessing memristor crossbar execution of vector-matrix multiplications. The proposed systems demonstrate excellent accuracy and throughput while consuming minimal energy for radionuclide detection. To ensure that the simulation results of our proposed hardware are realistic, the memristor parameters are chosen from our own fabricated memristor devices. Based on these results, we conclude that memristor-based computing is the preeminent technology for a radiation detection platform.

19.
J Phys Ther Sci ; 36(4): 161-166, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38562539

RESUMEN

[Purpose] The sense of vision is omitted in blind soccer, and sound source localization to grasp the position of the ball is extremely important. The purpose of this study was to clarify whether there is a difference in ability in sound source localization in its approaching condition between visually impaired and sighted people, using the source actually used in blind soccer ball competitions. [Participants and Methods] Eighteen participants were divided into two groups; 10 sighted people and eight visually impaired people. The participants were asked to press a switch when a rolling blind soccer ball was sensed in any one of the four directions. We recorded time error as the difference between the time when the ball passed the optical sensor set under the participant's feet and when the participant pressed the switch. [Results] The time error in response increased with the ball speed in all cases; however, its dependence on the ball speed was significantly different between the two groups. [Conclusion] The visually impaired participants made less time errors in response to the localization of the ball than the sighted participants, even when the ball speed increased. The results indicate that visually impaired people have better sound source localization ability than sighted people do.

20.
Food Chem ; 450: 139353, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636376

RESUMEN

Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.


Asunto(s)
Encéfalo , Grasas de la Dieta , Electroencefalografía , Percepción del Gusto , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Encéfalo/fisiología , Grasas de la Dieta/metabolismo , Grasas de la Dieta/análisis , Gusto , Ácidos Grasos/química , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA