Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Cell Rep ; 43(5): 120, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634973

RESUMEN

Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.


Asunto(s)
Productos Agrícolas , Metilación de ADN , Animales , División Celular , Proliferación Celular , Diferenciación Celular
2.
Breed Sci ; 73(3): 349-353, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37840979

RESUMEN

Somaclonal variation was studied by whole-genome sequencing in rice plants (Oryza sativa L., 'Nipponbare') regenerated from the zygotes, mature embryos, and immature embryos of a single mother plant. The mother plant and its seed-propagated progeny were also sequenced. A total of 338 variants of the mother plant sequence were detected in the progeny, and mean values ranged from 9.0 of the seed-propagated plants to 37.4 of regenerants from mature embryos. The natural mutation rate of 1.2 × 10-8 calculated using the variants in the seed-propagated plants was consistent with the values reported previously. The ratio of single nucleotide variants (SNVs) among the variants in the seed-propagated plants was 91.1%, which is higher than 56.1% previously reported, and not significantly different from those in the regenerants. Overall, the ratio of transitions to transversions of SNVs was lower in the regenerants as shown previously. Plants regenerated from mature embryos had significantly more variants than different progeny types. Therefore, using zygotes and immature embryos can reduce somaclonal variation during the genetic manipulation of rice.

3.
Plant Physiol Biochem ; 203: 108004, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714027

RESUMEN

Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.

4.
Mol Biotechnol ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528332

RESUMEN

In the world's flower trade, gladiolus (Gladiolus spp.) is ranked first among bulbous flowers and eighth among cut flowers, with more than 30,000 different cultivars being grown. Mass multiplication and commercialization are restricted by the traditional propagation methods. However, the large-scale proliferation and improvement of the gladiolus have been accomplished with the aid of plant tissue culture and other biotechnological techniques. The current review includes a thorough examination of the growth and development parameters required for successful in vitro gladiolus development as well as cormel formation. Moreover, focus is being given to various techniques and methods such as in vitro cytogenetic stability and modification of chromosome number, in vitro mutagenesis and selection of pest resistance, in vitro identification and selection to develop virus-free germplasm, cryopreservation, synthetic seed technology, identifying virus diseases by RT-PCR, somaclonal variation, and protoplast and somatic hybridization. Molecular markers and their applications for genetic diversity analysis, relationships between different genotypes, and clonal stability analysis in Gladiolus species have been conducted by several research groups worldwide and are also being discussed. The article also covers efforts to enhance the functionality of plant phenotypes through genetic transformation. Future prospects for further improvement of ornamental gladiolus are also explored. Overall, the current review provides insight into the applications of basic and advanced biotechnological tools for gladiolus improvement.

5.
Plants (Basel) ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903969

RESUMEN

Somaclonal variations in tissue cultures can be used in plant breeding programs. However, it is still unclear whether somaclonal variations and their original parent have differences in volatile compounds, and the candidate genes which result in the differences in volatile compounds also need to be identified. In this study, we utilized the 'Benihoppe' strawberry and its somaclonal mutant 'Xiaobai', which has different fruit aromas compared with 'Benihoppe', as research materials. Using HS-SPME-GC-MS, 113 volatile compounds have been identified in the four developmental periods of 'Benihoppe' and 'Xiaobai'. Among them, the quantity and content of some unique esters in 'Xiaobai' were much higher than that in 'Benihoppe'. In addition, we found that the contents and odor activity values of ethyl isovalerate, ethyl hexanoate, ethyl butyrate, ethyl pentanoate, linalool, and nerolidol in the red fruit of 'Xiaobai' were much higher compared with 'Benihoppe', which may result from the significantly increased expression of FaLOX6, FaHPL, FaADH, FaAAT, FaAAT1, FaDXS, FaMCS, and FaHDR in 'Xiaobai'. However, the content of eugenol in 'Benihoppe' was higher than that in 'Xiaobai', which may result from the higher expression of FaEGS1a in 'Benihoppe' compared with 'Xiaobai'. The results provide insights into the somaclonal variations that affect the volatile compounds in strawberries and can be used for strawberry quality improvement.

6.
Biology (Basel) ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36979133

RESUMEN

Drug-type cannabis is often multiplied using micropropagation methods to produce genetically uniform and disease/insect-free crops. However, micropropagated plantlets often exhibit phenotypic variation, leading to culture decline over time. In cannabis, the source of these changes remains unknown, though several factors (e.g., explant's sources and prolonged in vitro culture) can result in such phenotypical variations. The study presented herein evaluates the effects of explant sources (i.e., nodal segments derived from the basal, near-basal, middle, and apical parts of the greenhouse-grown mother plant) over multiple subcultures (4 subcultures during 235 days) on multiplication parameters and leaf morphological traits of in vitro cannabis plantlets. While initial in vitro responses were similar among explants sourced from different regions of the plant, there were significant differences in performance over the course of multiple subcultures. Specifically, explant source and/or the number of subcultures significantly impacted plantlet height, number of nodes, and canopy surface area. The explants derived from the basal and near-basal parts of the plant resulted in the tallest shoots with the greatest number of nodes, while the explants derived from the middle and apical regions led to shorter shoots with fewer nodes. Moreover, the basal-derived explants produced cannabis plantlets with shorter but wider leaves which demonstrated the potential of such explants for in vitro rejuvenation practices with minimal culture decline. This study provides new evidence into the long-term impacts of explant source in cannabis micropropagation.

7.
Biology (Basel) ; 12(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36829447

RESUMEN

Salix myrtilloides L. is a relict species, threatened with extinction in many European countries. To prevent the loss of the species, tissue culture was established to produce plant material for reintroduction in natural habitats. Micropropagation was chosen as a method to obtain new plants. S. myrtilloides shoots were disinfected with NaOCl, AgNO3, or with a two-step disinfection with NaOCl, and then placed on MS medium supplemented with BA at 1 mg·dm-3 and IBA at 0.1 mg·dm-3. Regenerated shoots were cultivated in presence of BA, KIN, and 2iP to select the treatment with the highest multiplication rate. The obtained plants were acclimatized to ex vitro conditions. Inter-simple sequence repeat (ISSR) and flow cytometric analyses were conducted on in vitro regenerated plants to check their genetic stability. The best disinfection results were obtained when explants were treated with 1.5% NaOCl for 20 min. The highest multiplication rate and good quality plants were noted in the control media, without growth regualtors and in presence of kinetin at 0.5 mg·dm-3. Flow cytometry and ISSR analyses confirmed genetic stability in plantlets, which indicated the possibility to use the in vitro obtained plants for reintroduction.

8.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614275

RESUMEN

Cell and tissue plant cultures are used either to save vulnerable species from extinction or to multiply valuable genotypes, or both, and are widely applied for economically important plant species. For medicinal plants, the use of in vitro technologies for the production of secondary metabolites and pathogen-free plants has been greatly developed. Two opposite aspects characterize the in vitro micropropagation of medicinal plants: maintaining genetic fidelity for the perpetuation and preservation of elites, and the identification and exploitation of somaclonal variations associated with new, useful traits. A balance between what is advantageous and what is undesirable is necessary, and this implies the identification of somaclonal variability at all levels, from the phenotypic to molecular ones. This review addresses the somaclonal variation arising from the in vitro multiplication of medicinal plants from three perspectives: cytogenetics, genetics, and epigenetics. The possible causes of the appearance of somaclones, the methods for their identification, and the extent to which they are desirable are presented comparatively for different plant species with therapeutic properties. The emphasis is on the subtle changes at the genetic and epigenetic level, as it results from the application of methods based on DNA markers.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/genética , Epigénesis Genética , Marcadores Genéticos , Fenotipo , Genotipo
9.
Plants (Basel) ; 12(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36678944

RESUMEN

Starch content is one of the major quality criteria targeted by potato breeding programs. Traditional potato breeding is a laborious duty due to the tetraploid nature and immense heterozygosity of potato genomes. In addition, screening for functional genetic variations in wild relatives is slow and strenuous. Moreover, genetic diversity, which is the raw material for breeding programs, is limited due to vegetative propagation used in the potato industry. Somaclonal variation provides a time-efficient tool to breeders for obtaining genetic variability, which is essential for breeding programs, at a reasonable cost and independent of sophisticated technology. The present investigation aimed to create potato somaclones with an improved potential for starch accumulation. Based on the weight and starch content of tubers, the somaclonal variant Ros 119, among 105 callus-sourced clones, recorded a higher tuberization potential than the parent cv Lady Rosetta in a field experiment. Although this somaclone was similar to the parent in the number of tubers produced, it exhibited tubers with 42 and 61% higher fresh and dry weights, respectively. Additionally, this clone recorded 10 and 75% increases in starch content based on the dry weight and average content per plant, respectively. The enhanced starch accumulation was associated with the upregulation of six starch-synthesis-related genes, namely, the AGPase, GBSS I, SBE I, SBE II, SS II and SS III genes. AGPase affords the glycosyl moieties required for the synthesis of amylose and amylopectin. GBSS is required for amylose elongation, while SBE I, SBE II, SS II and SS III are responsible for amylopectin.

10.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203713

RESUMEN

In vitro culture allows the production of numerous plants with both desirable and undesirable traits. To investigate the impact of the propagation method on highbush blueberry plants, an analysis was performed on four groups of differentially propagated plants: in vitro with axillary (TC-Ax) or adventitious shoots (TC-Ad), conventionally (SC) and using a mixed method (TC/SC). The analysis included plant features (shoot length and branching, chlorophyll and fluorescence and DNA methylation) and fruit properties (antioxidant compounds). The data obtained indicated significant differences between plants propagated conventionally and in vitro, as well as variations among plants derived from in vitro cultures with different types of explants. SC plants generally exhibited the lowest values of morphological and physiological parameters but produced fruits richest in antioxidant compounds. TC/SC plants were dominant in length, branching and fluorescence. Conversely, TC-Ax plants produced fruits with the lowest levels of antioxidant compounds. The methylation-sensitive amplified polymorphism (MSAP) technique was employed to detect molecular differences. TC-Ad plants showed the highest methylation level, whereas SC plants had the lowest. The overall methylation level varied among differentially propagated plants. It can be speculated that the differences among the analysed plants may be attributed to variations in DNA methylation.


Asunto(s)
Arándanos Azules (Planta) , Arándanos Azules (Planta)/genética , Antioxidantes , Metilación de ADN , Clorofila , Fluorescencia
11.
Biology (Basel) ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36552255

RESUMEN

For the long-term preservation of genetic resources, cryopreservation techniques have been developed for strawberry germplasm, mainly using in vitro-grown shoot tips. In this study, genetic stability was tested under greenhouse conditions for six strawberry accessions (IT232511, PHS0132, IT245810, IT245830, IT245852, and IT245860) derived from the following procedures: (1) conventional propagation (GH: greenhouse maintained); (2) in vitro propagation (TC: tissue culture); (3) pretreatment before cryopreservation (-LN: non-liquid nitrogen exposure); and (4) cryopreservation (+LN: liquid nitrogen exposure). To test the performance of phenotypic traits, we measured six vegetative and five fruit traits. There were no distinct differences in most of the characteristics, but a few traits, such as sugar content and pH of fruits in three accessions, showed higher values in +LN compared to GH. However, the differences disappeared in the first runner generation. To test genetic variations, a total of 102 bands were generated by twelve inter simple sequence repeat (ISSR) primers. A few polymorphic bands were found only in plants derived from TC of IT245860, which was not cryopreserved. The sequencing analysis of four polymorphic bands produced by ISSR_15 showed that none of these sequences matched the characterized genes in NCBI. Phenotypic abnormality was not observed across all plants. This study indicates that cryopreserved plants of the six strawberry accessions are phenotypically and genetically stable. Therefore, the results of this study can help to implement cryobanking of strawberry germplasm.

12.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558039

RESUMEN

Gardenia jasminoides Ellis is an aromatic and medicinal plant of high economic value. Much research has focused on the phytochemistry and biological activities of Gardenia fruit extracts; however, the potential of the Gardenia plant in vitro cultures used as mass production systems of valuable secondary metabolites has been understudied. This paper presents data on metabolite profiling (GC/MS and HPLC), antioxidant activities (DPPH, TEAC, FRAP, and CUPRAC), and SSR profiles of G. jasminoides plant leaves and in vitro cultures with different levels of differentiation (shoots, callus, and cell suspension). The data show strong correlations (r = 0.9777 to r = 0.9908) between antioxidant activity and the concentrations of chlorogenic acid, salicylic acid, rutin, and hesperidin. Eleven co-dominant microsatellite simple sequence repeats (SSRs) markers were used to evaluate genetic variations (average PIC = 0.738 ± 0.153). All of the investigated Gardenia in vitro cultures showed high genetic variabilities (average Na = 5.636 ± 2.157, average Ne = 3.0 ± 1.095). This is the first report on a study on metabolite profiles, antioxidant activities, and genetic variations of G. jasminoides in vitro cultures with different levels of differentiation.


Asunto(s)
Gardenia , Plantas Medicinales , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Diferenciación Celular , Frutas , Extractos Vegetales/farmacología
13.
Genes (Basel) ; 13(11)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36421789

RESUMEN

The in vitro culture technique can be used for micropropagation of medicinal plants as well as for creating genotypes with an improved profile of phytochemical compounds. For this purpose, somaclonal variability may be used for the induction of genetic diversity among regenerants. The paper presents a protocol for obtaining Scutellaria baicalensis regenerants by indirect organogenesis and the assessment of their genetic variability with the use of start codon-targeted markers. The most intense process of indirect shoot organogenesis was observed on Murashige and Skoog medium supplemented with kinetin and 6-Benzylaminopurine (0.5 mg × dm-3 each)-7.4 shoot per explant on average. The callogenesis process occurred on the medium supplemented with TDZ, while the medium supplemented with GA3 allowed for direct shoot organogenesis and was used for the micropropagation of regenerants. In the analysis of plantlets obtained by indirect organogenesis, 11 ScoT markers generated a total of 130 amplicons, 45 of which were polymorphic. This analysis showed genetic diversity of regenerants in relation to the donor plant as well as within them, with mean similarity among the analyzed genotypes at the level of 0.90. This study confirms that the use of in vitro cultures allows for the possibility to generate genetic variability in Scutellaria baicalensis, which can be effectively revealed with the use of the SCoT marker.


Asunto(s)
Plantas Medicinales , Scutellaria baicalensis , Scutellaria baicalensis/genética , Plantas Medicinales/genética , Codón Iniciador , Biomarcadores , Variación Genética/genética
14.
Plant Physiol Biochem ; 193: 99-109, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343465

RESUMEN

In vitro plant regeneration is a pivotal process in genetic engineering to obtain large numbers of transgenic, cisgenic and gene edited plants in the frame of functional gene or genetic improvement studies. However, several issues emerge as regeneration is not universally possible across the plant kingdom and many variables must be considered. In grapevine (Vitis spp.), as in other woody and fruit tree species, the regeneration process is impaired by a recalcitrance that depends on numerous factors such as genotype and explant-dependent responses. This is one of the major obstacles in developing gene editing approaches and functional genome studies in grapevine and it is therefore crucial to understand how to achieve efficient regeneration across different genotypes. Further issues that emerge in regeneration need to be addressed, such as somaclonal mutations which do not allow the regeneration of individuals identical to the original mother plant, an essential factor for commercial use of the improved grapevines obtained through the New Breeding Techniques. Over the years, the evolution of protocols to achieve plant regeneration has relied mainly on optimizing protocols for genotypes of interest whilst nowadays with new genomic data available there is an emerging opportunity to have a clearer picture of its molecular regulation. The goal of this review is to discuss the latest information available about different aspects of grapevine in vitro regeneration, to address the main factors that can impair the efficiency of the plant regeneration process and cause post-regeneration problems and to propose strategies for investigating and solving them.


Asunto(s)
Fitomejoramiento , Vitis , Vitis/genética , Edición Génica/métodos , Ingeniería Genética , Genómica
15.
Plants (Basel) ; 11(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36235433

RESUMEN

Simple sequence repeat (SSR) markers were used to evaluate the genetic stability of the acclimatized micropropagated and regenerated plants of a high cannabidiol (H-CBD) and a high cannabigerol (H-CBG) variety of Cannabis sativa L. Shoot regeneration and proliferation were achieved by culturing calli in Murashige and Skoog basal medium (MS) supplemented with several concentrations of 6-benzyladenine (BA) or thidiazuron (TDZ). Calli derived mostly from stem explants, rather than leaves, cultured on MS supplemented with 2,4-Dichlorophenoxyacetic acid (2,4-D) or combination of kinetin (KIN) with 1-Naphthaleneacetic acid (NAA) or 2,4-D. Rooting of the regenerated plantlets accomplished on half-strength MS medium supplemented with indole-3-butyric acid (IBA). Previous studies performed have developed an efficient in vitro micropropagation protocol for mass production. Both in vitro methodologies can be employed in genetic breeding via molecular techniques. The genetic stability of micropropagated and regenerated plants was accomplished using twelve SSR primer pairs that produced reproducible and clear bands, ranging from 90 to 330 bp in size, and resulted in amplification of one or two alleles, corresponding to homozygous or heterozygous individuals. The SSR amplification products were monomorphic across all the micropropagated and regenerated plants and comparable to mother plants. The monomorphic banding pattern confirmed the genetic homogeneity of the in vitro cultured acclimatized and mother plants as no somaclonal variation was detected in clones for these specific SSRs. Our results evidently suggest that the developed culture protocols for in vitro multiplication is appropriate and applicable for clonal mass propagation of the C. sativa varieties and demonstrate the reliability of this in vitro propagation system.

16.
J Genet Eng Biotechnol ; 20(1): 145, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264523

RESUMEN

BACKGROUND: Artocarpus heterophyllus is an important tropical agroforestry species that bears multiple applications. However, the population of this species is reduced due to various anthropogenic activities. For this reason, in vitro approach is needed to propagate or conserve this species as in vivo propagation methods face various obstacles. In this respect, the present investigation was undertaken to produce genetically stable jackfruit trees through in vitro technology. In vivo grew shoot tips were harvested on Murashige and Skoog (MS) medium containing several plant growth regulators to achieve this. RESULTS: The 6-benzylaminopurine (BAP) at the concentration of 1.5 mg L-1, indole-3-butyric acid (IBA) at 0.5 mg L-1, and α-naphthaleneacetic acid (NAA) at 0.1 mg L-1 in combination on MS media yielded superior shoot response (94.44%), longest shoot length (4.02 cm), and the maximum number of shoots per explant (4.78). They were further multiplied by repeated subculturing on the same media composition and the third subculture resulted in a maximum number of shoots (5.92) with the largest shoot length (5.85 cm). Among the different media screened for rooting, the » MS media yielded 94.44% rooting response, the longest root length (3.78 cm), and the maximum number of roots per shoot (8.44) with 0.1 mg L-1 NAA, 0.5 mg L-1 IBA and 0.1 mg L-1 BAP in combination. Primary hardening showed 88.89% of plant survival under greenhouse conditions after 4 weeks of incubation having a sterilized mixture of garden soil and vermiculite mixture (1:1, w/w). It increased to 90.60% after the secondary hardening process in a vermiculite-soil mixture (2:1; w/w). No polymorphism was detected on random amplification of polymorphic DNA (RAPD) profiling between the mother plant and hardened plants, indicating high genetic stability among the clones. CONCLUSIONS: This is the first report of the genetic fidelity study of in vitro grown regenerants of A. heterophyllus. This study established a micropropagation protocol for genetically uniform in vitro regeneration of this species to supply plant resources to various industries or conservation of elite germplasm.

17.
Methods Mol Biol ; 2527: 1-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951179

RESUMEN

Somatic embryogenesis is a natural phenomenon through which somatic embryos are produced from somatic cells although. It is considered the most efficient morphogenic pathways for plant multiplication. One of the key features of somatic embryogenesis is the use of cellular totipotency, where dedifferentiation is induced to foster cell proliferation, followed by the induction of differentiation using plant growth regulators to produce new plants. There is a cell group with the potential to undergo the somatic embryogenesis pathway through adequate stimulation (plant growth regulators, incubation conditions, and supplementation of the culture medium). There are two somatic embryogenesis pathways in plants: direct and indirect embryogenesis. Direct somatic embryogenesis consists of the formation of embryos directly from isolated cells, without the formation of "callous" tissue. Indirect somatic embryogenesis is characterized by the formation of a callus as a stage that precedes the formation of somatic embryos. It should be stressed that not all plant cells have this morphogenic capacity; consequently, determining the type of factors that drive this type of response has been challenging. This book provides the reader with updated available information on the techniques, relevant protocols, and tools to perform somatic embryogenesis in different plant species for economic purposes.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Medios de Cultivo , Desarrollo Embrionario/genética , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas/métodos , Plantas/genética
18.
Curr Opin Plant Biol ; 69: 102265, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988353

RESUMEN

Plants show exceptional developmental plasticity and the ability to reprogram cell identities during regeneration. Although regeneration has been used in plant propagation for decades, we only recently gained detailed cellular and molecular insights into this process. Evidently, not all cell types have the same regeneration potential, and only a subset of regeneration-competent cells reach pluripotency. Pluripotent cells exhibit transcriptional similarity to root stem cells. In different plant regeneration systems, transcriptional reprogramming involves transient release of chromatin repression during pluripotency establishment and its restoration during organ or embryo differentiation. Incomplete resetting of the epigenome leads to somaclonal variation in regenerated plants. As single-cell technologies advance, we expect novel, exciting insights into epigenome dynamics during the establishment of pluripotency.


Asunto(s)
Cromatina , Plantas , Cromatina/genética , Genes de Plantas
19.
Plants (Basel) ; 11(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890445

RESUMEN

Robust protocols for the regeneration of somatic embryos in vitro are essential for the efficient use of the most modern biotechnologies. Unfortunately, in perennial trees such as Citrus, plants regenerated from juvenile tissues usually exhibit strong, undesirable juvenile characters such as thorny habit and delayed flowering and fruit production. In this work, we tested whether the cell types (nucellar and stigma/style) used to regenerate Citrus plants through somatic embryogenesis affected the transition from the juvenile to mature phase. The results show that regenerants from nucellar cells presented persistent juvenile characters, whereas plants originating from stigma/style explants transited to the mature phase more rapidly. Our observations support the hypothesis that the totipotent cells originated from different cell types are not equivalent, possibly by maintaining memory of their previously differentiated state.

20.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457133

RESUMEN

The role of miRNAs in connection with the phenomenon of somaclonal variation, which occurs during plant in vitro culture, remains uncertain. This study aims to investigate the possible role of miRNAs in multi-omics regulatory pathways in cucumber somaclonal lines. For this purpose, we performed sRNA sequencing (sRNA-seq) from cucumber fruit samples identified 8, 10 and 44 miRNAs that are differentially expressed between somaclones (S1, S2, S3 lines) and the reference B10 line of Cucumis sativus. For miRNA identification, we use ShortStack software designed to filter miRNAs from sRNAs according to specific program criteria. The identification of predicted in-silico targets revealed 2,886 mRNAs encoded by 644 genes. The functional annotation of miRNA's target genes and gene ontology classification revealed their association with metabolic processes, response to stress, multicellular organism development, biosynthetic process and catalytic activity. We checked with bioinformatic analyses for possible interactions at the level of target proteins, differentially expressed genes (DEGs) and genes affected by genomic polymorphisms. We assume that miRNAs can indirectly influence molecular networks and play a role in many different regulatory pathways, leading to somaclonal variation. This regulation is supposed to occur through the process of the target gene cleavage or translation inhibition, which in turn affects the proteome, as we have shown in the example of molecular networks. This is a new approach combining levels from DNA-seq through mRNA-seq, sRNA-seq and in silico PPI in the area of plants' somaclonal variation.


Asunto(s)
Cucumis sativus , MicroARNs , Biología Computacional , Cucumis sativus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA