Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275055

RESUMEN

Protein therapeutics, vaccines, and other commercial products are often sensitive to environmental factors, such as temperature and long-term storage. In many cases, long-term protein stability is achieved by refrigeration or freezing. One alternative is the encapsulation of the protein cargo within an inert silica matrix (ensilication) and storage or transport at room temperature as a dry powder. In this paper, we test the effect of three commonly used biological buffers on the ensilication, storage, and desilication of the enzyme lysozyme. We show that ensilication protects lysozyme from heat (100 °C for 1 h) and during storage (18 months at room temperature). The choice of ensilication buffer has little effect on the activity of lysozyme after desilication. Our results provide confidence in the continued pursuit of ensilication as a methodology for protein stabilisation and in its compatibility with biological buffers.


Asunto(s)
Estabilidad de Enzimas , Muramidasa , Dióxido de Silicio , Muramidasa/química , Dióxido de Silicio/química , Temperatura , Calor , Tampones (Química)
2.
Int J Pharm ; 645: 123415, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714313

RESUMEN

Treating wound infections is a challenging concern in various clinical settings in Egypt, especially in the increasing global problem of resistance to antimicrobials. Here, we aimed to fabricate CuO NPs via green synthesis using aqueous Yucca gigantea extract. Then, the effect of green synthesized CuO NPs on Staphylococcus aureus clinical isolates has been studied in vivo and in vitro. The aqueous extract of Yucca gigantea has been employed in our study as a scale-up approach to safely, affordably, sustainably, and practically fabricate copper oxide nanoparticles (CuO NPs). Fourier transforms infrared (FT-IR), X-ray Diffraction (XRD), and UV-vis spectroscopy were utilized in vitro to describe the bonding features of CuO NPs.Scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), and dynamic light scattering (DLS) were used to detect the morphological and elemental composition of the resulting CuO NPs. The fabrication of CuO NPs was confirmed by the IR spectral band at 515 cm-1, ensuring the metal-oxygen bondCu-O with two strong bands at 229 and 305 nm. SEM and TEM show CuO NPs with a size range from 30 to 50 nm. Cu and O comprised most of the particles produced through green synthesis, with weight percentages of 57.82 and 42.18 %, respectively. CuO NPs were observed to have a Zeta-potential value of -15.7 mV, demonstrating their great stability. CuO NPs revealed antibacterial potential toward the tested isolates with minimum inhibitory concentration values of 128 to 512 µg/mL. CuO NPs had antibiofilm potential by crystal violet assay, downregulating the expression of icaA and icaD genes in 23.07 % and 19.32 of the S. aureus isolates. The wound-healing potential of CuO NPs was investigated in vivo. It significantly decreased the bacterial burden and increased wound healing percentage compared to the positive control group. Moreover, CuO NPs caused an upregulation of the genes encoding platelet-derived growth factor (PDGF) and fibronectin in tissue repair. Thus, we can use CuO NPs as a future source for wound healing materials, especially in infected wounds.

3.
Anal Chim Acta ; 1268: 341400, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268341

RESUMEN

The proof-of-concept of an integrated automatic foam microextraction lab-in-syringe (FME-LIS) platform coupled to high performance liquid chromatography is presented. Three different sol-gel coated foams were synthesized, characterized, and conveniently packed inside the glass barrel of the LIS syringe pump, as an alternative approach for sample preparation, preconcentration and separation. The proposed system efficiently combines the inherent benefits of lab-in-syringe technique, the good features of sol-gel sorbents, the versatile nature of foams/sponges, as well as the advantages of automatic systems. Bisphenol A (BPA) was used as model analyte, due to the increasing concern for the migration of this compound from household containers. The main parameters that affect the extraction performance of the system were optimized and the proposed method was validated. The limit of detection for BPA were 0.5 and 2.9 µg L-1, for a sample volume of 50 mL and 10 mL, respectively. The intra-day precision was <4.7% and the inter-day precision was <5.1% in all cases. The performance of the proposed methodology was evaluated for the migration studies of BPA using different food simulants, as well as for the analysis of drinking water. Good method applicability was observed based on the relative recovery studies (93-103%).

4.
Materials (Basel) ; 15(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36556689

RESUMEN

This work presents a facile sol-gel method for the deposition of ZnO and ZnO:Mg films. The films are spin coated on silicon and quartz substrates. The impact of magnesium concentrations (0, 0.5, 1, 2 and 3 wt%) and post-annealing treatments (300-600 °C) on the film's structural, vibrational and optical properties is investigated. Undoped ZnO films crystallize in the wurtzite phase, with crystallite sizes ranging from 9.1 nm (300 °C) to 29.7 nm (600 °C). Mg doping deteriorates the film crystallization and shifting of 002 peak towards higher diffraction angles is observed, indicating the successful incorporation of Mg into the ZnO matrix. ZnO:Mg films (2 wt%) possess the smallest crystallite size, ranging from 6.2 nm (300 °C) to 25.2 nm (600 °C). The highest Mg concentration (3 wt%) results into a segregation of the MgO phase. Lattice constants, texture coefficients and Zn-O bond lengths are discussed. The diminution of the c lattice parameter is related to the replacement of Zn2+ by Mg2+ in the ZnO host lattice. The vibrational properties are studied by Fourier transform infrared (FTIR) spectroscopy. IR lines related to Mg-O bonds are found for ZnO:Mg films with dopant concentrations of 2 and 3 wt%. The optical characterization showed that the transmittance of ZnO:Mg thin films increased from 74.5% (undoped ZnO) to about 89.1% and the optical band gap energy from 3.24 to 3.56 eV. Mg doping leads to a higher refractive index compared to undoped ZnO films. The FESEM (field emission scanning electron microscopy) technique is used for observation of the surface morphology modification of ZnO:Mg films. The doped ZnO films possess a smoother grained surface structure, opposite to the wrinkle-type morphology of undoped sol-gel ZnO films. The smoother surface leads to improved transparency of ZnO:Mg films.

5.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268971

RESUMEN

In our study, transparent and conductive films of NiOx were successfully deposited by sol-gel technology. NiOx films were obtained by spin coating on glass and Si substrates. The vibrational, optical, and electrical properties were studied as a function of the annealing temperatures from 200 to 500 °C. X-ray Photoelectron (XPS) spectroscopy revealed that NiO was formed at the annealing temperature of 400 °C and showed the presence of Ni+ states. The optical transparency of the films reached 90% in the visible range for 200 °C treated samples, and it was reduced to 76-78% after high-temperature annealing at 500 °C. The optical band gap of NiOx films was decreased with thermal treatments and the values were in the range of 3.92-3.68 eV. NiOx thin films have good p-type electrical conductivity with a specific resistivity of about 4.8 × 10-3 Ω·cm. This makes these layers suitable for use as wideband semiconductors and as a hole transport layer (HTL) in transparent solar cells.

6.
Food Chem ; 373(Pt B): 131517, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34772569

RESUMEN

Triazine herbicides are a class of common pesticides which are widely used to control the weeds in many agricultural crops. Although many studies have described methodologies for the determination of triazine herbicides in aqueous samples, the attention given to agricultural crops and their products is far more limited. In this study, a novel sol-gel zwitterionic multi-mode fabric phase sorptive extraction (FPSE) platform was developed for the matrix clean-up, extraction and preconcentration of five triazine herbicides from fruit juice samples prior to their determination by high performance liquid chromatography-diode array detection (HPLC-DAD). The novel zwitterionic multi-mode sorbent was characterized and its performance for fruit juice analysis was evaluated. Compared to other sol-gel sorbents, the novel zwitterionic sorbent helped cleaning all the acidic interferences from fruit juices. The herein reported FPSE protocol was optimized and validated. Under optimum conditions, the FPSE method showed good accuracy, precision and sensitivity. The limits of detection and limits of quantification for all analytes were 0.15 ng mL-1 and 0.50 ng mL-1, respectively. The enhancement factors of this method ranged between 36.7 and 51.8. The relative standard deviation for intra-day precision was below 5.6% and for inter-day precision was below 8.8%. Finally, the proposed FPSE-HPLC-DAD method was successfully employed for the analysis of various fruit juice samples.


Asunto(s)
Herbicidas , Cromatografía Líquida de Alta Presión , Herbicidas/análisis , Textiles , Triazinas , Agua
7.
J Funct Biomater ; 11(2)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545491

RESUMEN

The article presents an original way of getting porous and mechanically strong CaSiO3-HAp ceramics, which is highly desirable for bone-ceramic implants in bone restoration surgery. The method combines wet and solid-phase approaches of inorganic synthesis: sol-gel (template) technology to produce the amorphous xonotlite (Ca6Si6O17·2OH) as the raw material, followed by its spark plasma sintering-reactive synthesis (SPS-RS) into ceramics. Formation of both crystalline wollastonite (CaSiO3) and hydroxyapatite (Ca10(PO4)6(OH)2) occurs "in situ" under SPS conditions, which is the main novelty of the method, due to combining the solid-phase transitions of the amorphous xonotlite with the chemical reaction within the powder mixture between CaO and CaHPO4. Formation of pristine HAp and its composite derivative with wollastonite was studied by means of TGA and XRD with the temperatures of the "in situ" interactions also determined. A facile route to tailor a macroporous structure is suggested, with polymer (siloxane-acrylate latex) and carbon (fibers and powder) fillers being used as the pore-forming templates. Microbial tests were carried out to reveal the morphological features of the bacterial film Pseudomonas aeruginosa that formed on the surface of the ceramics, depending on the content of HAp (0, 20, and 50 wt%).

8.
J Chromatogr A ; 1603: 92-101, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31280943

RESUMEN

In this study, three kinds of Zeolite imidazolate framework-8 (ZIF-8), synthesized by solvothermal, stirring and ball-milling method, were fabricated on the stainless steel wire via sol-gel technique. These fibers were used as solid phase microextraction (SPME) coating materials and applied for analyzing 16 polycyclic aromatic hydrocarbons (PAHs) and 11 nitro polycyclic aromatic hydrocarbons (NPAHs) in environmental water samples by gas chromatography-tandem mass spectrometry (GC-MS). The optimal pH, ionic strength, extraction time, extraction temperature, desorption temperature and desorption time were 6.0, without salt addition, 45 min, 35 °C, 260 °C and 5 min, respectively. The extraction mechanism of the ZIF-8 fiber might be the hydrophobicity, molecular penetration and π-π stacking interactions. Under the optimized conditions, the as-proposed fiber provides a wide linearity range from 10 to 20,000 ng L-1 and a low detection limit of 0.3-27.0 ng L-1 for PAHs and NPAHs analysis. The single fiber and fiber to fiber relative standard deviations were observed in the range of 3.0%-13.9% and 3.5%-12.3%, respectively. The method shows great potential in environmental analysis field.


Asunto(s)
Estructuras Metalorgánicas/química , Compuestos de Nitrógeno/aislamiento & purificación , Transición de Fase , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Zeolitas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Concentración de Iones de Hidrógeno , Límite de Detección , Concentración Osmolar , Hidrocarburos Policíclicos Aromáticos/análisis , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Acero Inoxidable/química , Temperatura , Factores de Tiempo , Contaminantes Químicos del Agua/análisis , Difracción de Rayos X
9.
Polymers (Basel) ; 11(4)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995825

RESUMEN

Polydimethylsiloxane with hydroxy groups was functionalized to form functionalized polydimethylsiloxane, which subsequently underwent an addition reaction with isophorone diisocyanate to form the prepolymer. Next, 3-aminopropyltriethoxysilane (APTS) reacted with 3-glycidoxypropyltrimethoxysilane (GPTS) to produce bridged polysilsesquioxanes, and sol-gel technology was employed to form hyperbranched polysiloxane nanoparticles with hydroxy groups, APTS-GPTS, which was used as the additive. The hyperbranched polysiloxane and the prepolymer containing NCO functional groups then underwent an addition reaction to produce the hybrid materials. Fourier-transform infrared spectroscopy and 29Si nuclear magnetic resonance were used to characterize the structure of the polyurethane hybrid. Regarding thermal stability, after the hyperbranched polysiloxane nanoparticles was introduced, the integral procedural decomposition temperature increased from 348 °C for polyurethane matrix to 859 °C for the hybrid material. The results reveal that the thermal stability of the hybrid material substantially increased by approximately 247%.

10.
J Sep Sci ; 40(3): 717-724, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28042686

RESUMEN

A high-performance metal oxide polymer magnetite/polyethylene glycol nanocomposite was prepared and coated in situ on the surface of the optical fiber by sol-gel technology. The magnetite nanoparticles as nanofillers were synthesized by a coprecipitation method and bonded with polyethylene glycol as a polymer. The chemically bonded coating was evaluated for the headspace solid-phase microextraction of some environmentally important volatile organic compounds from aqueous samples in combination with gas chromatography and mass spectrometry. The prepared fiber was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The mass ratio of nanofiller and polymer on the coating extraction efficiency, morphology, and stability were investigated. The parameters affecting the extraction efficiency, including the extraction time and temperature, the ionic strength, desorption temperature, and time were optimized. The sol-gelized fiber showed excellent chemical stability and longer lifespan. It also exhibited high extraction efficiency compared to the two types of commercial fibers. For volatile organic compounds analysis, the new fiber showed low detection limits (0.008-0.063 ng/L) and wide linearity (0.001-450 × 104 ng/L) under the optimized conditions. The repeatability (interday and intraday) and reproducibility were 4.13-10.08 and 5.98-11.61%, and 7.35-14.79%, respectively (n = 5). For real sample analysis, three types of water samples (ground, surface, and tap water) were studied.


Asunto(s)
Monitoreo del Ambiente/métodos , Nanocompuestos/química , Polietilenglicoles/química , Compuestos Orgánicos Volátiles/análisis , Contaminantes Químicos del Agua/análisis , Agua/química , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Cromatografía de Gases y Espectrometría de Masas , Reproducibilidad de los Resultados , Microextracción en Fase Sólida
11.
J Chromatogr A ; 1470: 9-18, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27702617

RESUMEN

A novel solid-phase microextraction coating that contains perhydroxy cucurbit[6]uril((OH)12Q[6]) was prepared by a sol-gel method. (OH)12Q[6] was used as a starting coating material with hydroxy-terminated poly(dimethylsiloxane) (OH-PDMS) to bond chemically to a fused-silica substrate using 3-(2-cyclooxypropoxyl)propyltrimethoxysilane as cross-linking agent; hydrolysis and polycondensation reactions then led to the formation of a (OH)12Q[6]/PDMS-coating. The coating has a high thermal stability (360°C), long lifetime and can withstand organic and inorganic solvent rinsing because of the chemical binding between the coating and silica substrate. Its performance was tested by headspace (HS) solid-phase microextraction fiber coupled with gas chromatography to determine polycyclic aromatic hydrocarbon (PAHs) compounds in water samples. The (OH)12Q[6]/PDMS-coated fiber exhibited higher enrichment factors from fourfold for naphthalene to tenfold for pyrene compared with commercial PDMS fiber, and the enrichment factors increased with the number of condensed PAH rings. The strong adsorption affinity is believed to be attributed to hydrogen bonding and CH⋯π interactions between PAHs and (OH)12Q[6], according to the results of quantum chemical calculations. In the PAH analysis, the (OH)12Q[6]-coated fiber showed a good repeatability (<4.7%) and reproducibility between fibers (<9.4%), low detection limits (0.03-0.15µgL-1), and a wide linearity (0.1-1000µgL-1) under optimized conditions. This method was used for the simultaneous determination of seven PAHs with satisfactory recoveries of 90.56%-107.4% for Huaxi river water samples and 90.23%-109.5% for local wastewater samples, respectively.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Hidrocarburos Policíclicos Aromáticos/análisis , Microextracción en Fase Sólida/métodos , Cromatografía de Gases , Dimetilpolisiloxanos/química , Límite de Detección , Reproducibilidad de los Resultados , Dióxido de Silicio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
12.
J Sep Sci ; 39(16): 3137-44, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27383849

RESUMEN

A simple, rapid, highly efficient, and reliable sample preparation method has been developed for the extraction and analysis of triazole pesticides from cucumber, lettuce, bell pepper, cabbage, and tomato samples. This new sorbent in the hollow-fiber solid-phase microextraction method is based on the synthesis of polyethylene glycol-polyethylene glycol grafted flower-like cupric oxide nanoparticles using sol-gel technology. Afterward, the analytes were analyzed by high-performance liquid chromatography with ultraviolet detection. The main parameters that affect microextraction efficiency were evaluated and optimized. This method has afforded good linearity ranges (0.5-50 000 ng/mL for hexaconazol, 0.012-50 000 ng/mL for penconazol, and 0.02-50 000 ng/mL for diniconazol), adequate precision (2.9-6.17%, n = 3), batch-to-batch reproducibility (4.33-8.12%), and low instrumental LODs between 0.003 and 0.097 ng/mL (n = 8). Recoveries and enrichment factors were 85.46-97.47 and 751-1312%, respectively.


Asunto(s)
Cobre/química , Plaguicidas/aislamiento & purificación , Polietilenglicoles/química , Microextracción en Fase Sólida/métodos , Triazoles/aislamiento & purificación , Verduras/química , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Límite de Detección , Plaguicidas/análisis , Microextracción en Fase Sólida/instrumentación , Triazoles/química
13.
Ultrason Sonochem ; 31: 481-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26964975

RESUMEN

Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.

14.
J Sep Sci ; 39(9): 1709-16, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27027718

RESUMEN

In the present work, for the first time, an all-in-one solid-phase microextraction technique was developed for the simultaneous and efficient extraction of analytes within a vast polarity range. A novel fiber assembly composed of two different steel components each coated with different coatings (polydimethylsiloxane and polyethylene glycol) in terms of polarity by sol-gel technology was employed for the extraction of model compounds of different polarity in a single run followed by gas chromatography with mass spectrometry. Effective parameters in the extraction step and gas chromatography with mass spectrometry analysis were optimized for all model compounds. The detection limits of the developed method for model compounds were below 0.2 ng/L. The repeatability and reproducibility of the proposed method, explained by relative standard deviation, varied between 7.22 and 9.15% and between 7.95 and 14.90 (n = 5), respectively. Results showed that, under random conditions, compared to separate extractions performed by two other differently end-coated components that had not been assembled as the final dual fiber, as two individual fibers; simultaneous, efficient and relatively selective extraction of all model compounds was obtained in a single run by the proposed all-in-one technique. Finally, the optimized procedure was applied to extraction and determination of the model compounds in spiked water samples.

15.
Anal Chim Acta ; 908: 141-9, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26826696

RESUMEN

In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol-gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol-gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 µA mM(-1) and a detection limit of 16 µM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples.


Asunto(s)
Técnicas Biosensibles , Diamante , Geles , Ácido Láctico/análisis , Oxigenasas de Función Mixta/química , Nanopartículas , Espectroscopía Dieléctrica , Electrones , Microscopía de Fuerza Atómica
16.
J Chromatogr A ; 1425: 34-41, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26614173

RESUMEN

In this work, a laboratory preparation method based on sol-gel technology was proposed to develop a new kind of SPME (solid phase microextraction) fibers. Multi-walled carbon nanotubes (MWCNT) were selected as sol-gel active organic component. Stainless steel wires were used as the substrate of the fibers. Instead of traditional modification methods, microwave induced plasma was used to modify the stainless steel wire surface, resulting in a significant improvement in chemical adhesion of the fiber substrate and coating. The MWCNT coating exhibited several good properties. Acceptable fiber-to-fiber reproducibility (RSD≤13%) and repeatability (RSD<7%) were obtained. End-tidal breath of 10 normal humans were collected by Bio-VOC(®) sampler and assayed by the optimized SPME-GC-MS method. The calibration curves were all linear (R(2)≥0.994) in the range from 0.03 to 403.3ppbv for five alkanes. Detection limits (down to 0.001ppbv) were about one order of magnitude better than those of commercial PDMS fibers. The recovery of the spiked alkanes in real breath sample at 1ppbv ranged from 89.71 to 101.08% and the relative standard deviations were less than 8%. These results demonstrated the feasibility and practicality of the proposed preparation procedure. Applications of the in-house fabricated fibers for human breath analysis were successfully verified.


Asunto(s)
Alcanos/análisis , Nanotubos de Carbono , Microextracción en Fase Sólida/métodos , Pruebas Respiratorias , Cromatografía de Gases y Espectrometría de Masas , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Microextracción en Fase Sólida/instrumentación , Acero Inoxidable
17.
J Sep Sci ; 38(24): 4225-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26459611

RESUMEN

In this study, the application of a novel nanomaterial composite was investigated in two microextraction techniques of solid-phase microextraction and a needle trap device in a variety of sampling conditions. The optimum sampling temperature and relative humidity were 10°C and 20%, respectively, for both techniques with two sorbents of graphene/silica composite and polydimethyl siloxane. The two microextraction techniques with the proposed sorbent showed recoveries of 95.2 and 94.6% after 7 days. For the needle trap device the optimums desorption time and temperature were 3 min at 290°C and for SPME these measures were 1 and 1.5 min at 240-250°C for the graphene/silica composite and polydimethyl siloxane, respectively. The relative standard division obtained in inter- and intra-day comparative studies were 3.3-14.3 and 5.1-25.4, respectively. For four sample the limit of detection was 0.021-0.25 ng/mL, and the limit of quantitation was 0.08-0.75 ng/mL. The results show that the graphene/silica composite is an appropriate extraction media for both techniques. Combining an appropriate sorbent with microextraction techniques, and using these in conjunction with a sensitive analytical instrument can introduce a strong method for sampling and analysis of occupational and environmental pollutants in air.

18.
J Chromatogr A ; 1418: 21-28, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26411479

RESUMEN

In this research, poly (ethylene glycol)-poly (ethylene glycol) grafted flower-like cupric oxidenano particles (PEG-PEG-g-CuO NPs) as a novel fiber coating of solid-phase microextraction (SPME) were synthesized by using sol-gel technology. This fiber was successfully applied to extract and determine the ultra-trace levels of benzene, toluene, ethyl benzene and o-xylene in human hair using head space-solid-phase microextraction (HS-SPME) coupled to gas chromatography-flame ionization detector. Characterization and chemical composition of the nano particle was performed by Fourier transform infrared spectroscopy (FT-IR), energy dispersion spectroscopy (EDS) and back scatter analysis (BSA). These methods confirmed the successful fabrication of PEG-g-CuO NPs. The surface morphology of the fibers were inspected by scanning electron microscopy. The scanning electron microscopy (SEM) revealed many "crack-like" features and highly porous structure on the surface of fiber. The synthesized nanocomposites were used for preconcentration and extraction of benzene, toluene, ethyl benzene and o-xylene (BTEX). The effects of operating parameters such as: desorption temperature and time, extraction temperature, extraction time, stirring speed and salt effect were investigated and optimized. Under the optimal conditions, the method detection limits and the limits of quantification were between 0.00025-50.00000pgmL(-1) and 0.00200-200.00000pgmL(-1), respectively. Linearity was observed over a range 0.00200-200000.00000pgmL(-1). The relative standard deviations for one fiber (repeatability; n=5) were obtained from 3.30 up to 5.01% and between fibers or batch to batch (n=3; reproducibility) in the range of 3.63-6.21%. The developed method was successfully applied to simultaneous determination of BTEX in human hairs, tap water and distillate water.


Asunto(s)
Derivados del Benceno/análisis , Cobre/química , Cabello/química , Polietilenglicoles/química , Microextracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Benceno/análisis , Cromatografía de Gases/métodos , Ionización de Llama , Agua Dulce/química , Humanos , Nanopartículas , Polietilenglicoles/síntesis química , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Tolueno/análisis , Xilenos/análisis
19.
J Sep Sci ; 38(16): 2880-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041569

RESUMEN

A mesoporous carbon was fabricated using MCM-41 as a template and sucrose as a carbon source. The carbon material was coated on stainless-steel wires by using the sol-gel technique. The prepared solid-phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o-xylene, bromobenzene, and 4-chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 µg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 µg/L ranged from 73.1 to 99.1%.

20.
J Sep Sci ; 38(13): 2305-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25903264

RESUMEN

In this study, organic aerogels were synthesized by the sol-gel polycondensation of mixed cresol with formaldehyde in a slightly basic aqueous solution. Carbon aerogels and xerogels are generated by pyrolysis of organic aerogels. The novel sol-gel-based micro-solid-phase extraction sorbent, resorcinol-formaldehyde xerogel, was employed for preconcentration of some selected herbicides. Three herbicides of the aryloxyphenoxypropionate group, clodinafop-propargyl, haloxyfop-etotyl, and fenoxaprop-P-ethyl, were extracted from aqueous samples by micro-solid-phase extraction and subsequently determined by gas chromatography with mass spectrometry. The effect of different parameters influencing the extraction efficiency of these herbicides including sample flow rate, sample volume, and extraction time were investigated and optimized. Under optimum conditions, linear calibration curves in the range of 0.10-500 ng/L with R(2) > 0.99 were obtained. The relative standard deviation at 50 µg/L concentration level was lower than 10% (n = 5) and detection limits were between 0.05 and 0.20 µg/L. The proposed method was successfully applied to the sampling and extraction of herbicides from Zayanderood and paddy water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA