Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17044, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484318

RESUMEN

Acid or alkali spills destroy the physicochemical properties of soils and cause irreversible damage to their ecological functions. This study examined changes in physicochemical properties (i.e., organic matter, clay content, and cation exchange capacity (CEC)) as well as pH buffering capacity (indicator of soil ecological function) of 20 field soils in response to the spills. Also, we identified the characteristics of soils vulnerable to the spills. Although the spills did not substantially change the clay content, organic matter decreased by approximately 50%, consequently resulting in a 41% decrease in pH buffering capacity. When we classified soils into three groups based on soil properties and pH buffering capacity, the extent of change in soil properties by spill differed by group. As the organic matter content increased or clay content decreased, the soil tended to be more vulnerable to spills in terms of the degree to which the soil function was changed. Considering that the protonation-deprotonation characteristics of clay sized fraction were not remarkably changed by the spills, this result was mainly attributed to the dissolution of organic matter. Together with the successful prediction of CEC and pH buffering capacity by multiple linear regression models using organic matter and clay content, our findings enable the easy classification of soils based on their vulnerability and site-specific management of areas with a high probability of spills.

2.
Water Res ; 77: 107-118, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25864002

RESUMEN

A large-scale leaching assessment tool not only illustrates soil (or groundwater) vulnerability in unmonitored areas, but also can identify areas of potential concern for agrochemical contamination. This study describes the methodology of how the statewide leaching tool in Hawaii modified recently for use with pesticides and volatile organic compounds can be extended to the national assessment of soil vulnerability ratings. For this study, the tool was updated by extending the soil and recharge maps to cover the lower 48 states in the United States (US). In addition, digital maps of annual pesticide use (at a national scale) as well as detailed soil properties and monthly recharge rates (at high spatial and temporal resolutions) were used to examine variations in the leaching (loads) of pesticides for the upper soil horizons. Results showed that the extended tool successfully delineated areas of high to low vulnerability to selected pesticides. The leaching potential was high for picloram, medium for simazine, and low to negligible for 2,4-D and glyphosate. The mass loadings of picloram moving below 0.5 m depth increased greatly in northwestern and central US that recorded its extensive use in agricultural crops. However, in addition to the amount of pesticide used, annual leaching load of atrazine was also affected by other factors that determined the intrinsic aquifer vulnerability such as soil and recharge properties. Spatial and temporal resolutions of digital maps had a great effect on the leaching potential of pesticides, requiring a trade-off between data availability and accuracy. Potential applications of this tool include the rapid, large-scale vulnerability assessments for emerging contaminants which are hard to quantify directly through vadose zone models due to lack of full environmental data.


Asunto(s)
Contaminación Ambiental , Plaguicidas/química , Contaminantes Químicos del Agua/química , Contaminación Química del Agua/prevención & control , Agroquímicos/química , Sistemas de Información Geográfica , Agua Subterránea/química , Hidrología , Medición de Riesgo , Programas Informáticos , Suelo/clasificación , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA