Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(11): 2985-2999, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36807953

RESUMEN

The rhizosphere is a vital soil compartment providing key plant-beneficial functions. However, little is known about the mechanisms driving viral diversity in the rhizosphere. Viruses can establish lytic or lysogenic interactions with their bacterial hosts. In the latter, they assume a dormant state integrated in the host genome and can be awakened by different perturbations that impact host cell physiology, triggering a viral bloom, which is potentially a fundamental mechanism driving soil viral diversity, as 22%-68% of soil bacteria are predicted to harbour dormant viruses. Here we assessed the viral bloom response in rhizospheric viromes by exposing them to three contrasting soil perturbation agents: earthworms, herbicide and antibiotic pollutant. The viromes were next screened for rhizosphere-relevant genes and also used as inoculant on microcosms incubations to test their impacts on pristine microbiomes. Our results show that while post-perturbation viromes diverged from control conditions, viral communities exposed to both herbicide and antibiotic pollutant were more similar to each other than those influenced by earthworms. The latter also favoured an increase in viral populations harbouring genes involved in plant-beneficial functions. Post-perturbation viromes inoculated on soil microcosms changed the diversity of pristine microbiomes, suggesting that viromes are important components of the soil ecological memory driving eco-evolutionary processes that determine future microbiome trajectories according to past events. Our findings demonstrate that viromes are active players in the rhizosphere and need to be considered in efforts to understand and control the microbial processes towards sustainable crop production.


Asunto(s)
Herbicidas , Virus , Rizosfera , Viroma , Microbiología del Suelo , Bacterias/genética , Virus/genética , Suelo , Antibacterianos
2.
Sci Total Environ ; 872: 162289, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36804971

RESUMEN

This work revealed the profile of viral communities in paddy soils with different levels of arsenic (As) contamination during the flooded period. The structure of viral communities differed significantly in highly and moderately As-contaminated soils. The diversity of soil viral communities under high As contamination decreased. Siphoviridae, Podoviridae, Myoviridae, and Microviridae were the dominant viral families in all samples, and the relative abundances of five of the top 20 viral genera were significantly different between highly and moderately As-contaminated groups. Seventeen dissimilatory As(V)-reducing bacteria were predicted to host 161 viral operational taxonomic units (vOTUs), mainly affiliated with the genera of Sulfurospirillum, Deferribacter, Bacillus and Fusibacter. Among them, 28 vOTUs were also associated with Fe(III)-reducing bacteria, which belonged to different species of the genus Shewanella. Procrustes analysis showed that the community structure of soil viruses was strongly correlated with both prokaryotic community structure and geochemical properties. Random forest analyses revealed that the Total-Fe, DCB-Fe and oxalate-Fe were the most significant variables on viral community richness, while the total-As concentration was an important factor on the Shannon index. Furthermore, As resistance genes (ArsC, ArsR and ArsD), As methylation genes (arsM) and As transporter genes (Pst and Pit) were identified among the auxiliary metabolic genes (AMGs) of the virome. This work revealed that the viruses might influence microbial adaptation in response to As-induced stress, and provided a perspective on the potential virus-mediated biogeochemical cycling of As.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Humanos , Arsénico/análisis , Compuestos Férricos/metabolismo , Bacterias/metabolismo , Contaminación Ambiental/análisis , Suelo/química , Contaminantes del Suelo/análisis , Microbiología del Suelo
3.
Proc Natl Acad Sci U S A ; 119(45): e2209132119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322723

RESUMEN

Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m2 field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions.


Asunto(s)
Microbiota , Virus , Suelo , Microbiología del Suelo , Pradera , Bacterias/genética , Virus/genética , Genotipo
4.
Microbiome ; 9(1): 150, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183048

RESUMEN

BACKGROUND: Microbe-virus interactions have broad implications on the composition, function, and evolution of microbiomes. Elucidating the effects of environmental stresses on these interactions is critical to identify the ecological function of viral communities and understand microbiome environmental adaptation. Heavy metal-contaminated soils represent a relevant ecosystem to study the interplay between microbes, viruses, and environmental stressors. RESULTS: Metagenomic analysis revealed that Cr pollution adversely altered the abundance, diversity, and composition of viral and bacterial communities. Host-phage linkage based on CRISPR indicated that, in soils with high Cr contamination, the abundance of phages associated with heavy metal-tolerant hosts increased, as did the relative abundance of phages with broad host ranges (identified as host-phage linkages across genera), which would facilitate transfection and broader distribution of heavy metal resistance genes in the bacterial community. Examining variations along the pollutant gradient, enhanced mutualistic phage-bacterium interactions were observed in the face of greater environmental stresses. Specifically, the fractions of lysogens in bacterial communities (identified by integrase genes within bacterial genomes and prophage induction assay by mitomycin-C) were positively correlated with Cr contamination levels. Furthermore, viral genomic analysis demonstrated that lysogenic phages under higher Cr-induced stresses carried more auxiliary metabolic genes regulating microbial heavy metal detoxification. CONCLUSION: With the intensification of Cr-induced environmental stresses, the composition, replication strategy, and ecological function of the phage community all evolve alongside the bacterial community to adapt to extreme habitats. These result in a transformation of the phage-bacterium interaction from parasitism to mutualism in extreme environments and underscore the influential role of phages in bacterial adaptation to pollution-related stress and in related biogeochemical processes. Video Abstract.


Asunto(s)
Bacteriófagos , Bacterias/genética , Bacteriófagos/genética , Cromo , Suelo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA