Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Pollut ; 352: 124167, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754689

RESUMEN

Nanoscale zero valent iron (nZVI) is globally the main nanomaterial used in contaminated site remediation. This study aims to evaluate the sustainability of using nZVI in the nanoremediation of contaminated sites and to determine the factors that affect the sustainability of the use of nZVI in remediation. Five case studies of nZVI use on a pilot scale were selected. Life cycle analysis tools were used to evaluate environmental, economic, social impacts, and sustainability. The functional unit of the life cycle analyses was 1.00 m3 of remediated soil and groundwater. Case study of Brazil was the least sustainable, while case study of United States was the most sustainable. Only the modification of the functional unit results in variations in the sustainability index. Different factors influence the sustainability of nZVI in remediation, the main factor being the amount of nZVI used in the processes. Finally, this work contributes significantly to the state-of-the-art sustainable use of nZVI in remediation. This is a pioneering study in the detailed and comprehensive assessment of the sustainability of the use of nZVI in remediation. Through the analysis of case studies, it is possible to determine the main factors that influence the sustainability of the nZVI remediation life cycle.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Hierro , Contaminantes del Suelo , Contaminantes Químicos del Agua , Agua Subterránea/química , Restauración y Remediación Ambiental/métodos , Hierro/química , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Suelo/química , Brasil , Nanopartículas del Metal/química
2.
Sci Total Environ ; 876: 162584, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36889407

RESUMEN

Modeling stomatal behavior is necessary for accurate stomatal simulation and predicting the terrestrial water­carbon cycle. Although the Ball-Berry and Medlyn stomatal conductance (gs) models have been widely used, variations and the drivers of their key slope parameters (m and g1) remain poorly understood under salinity stress. We measured leaf gas exchange, physiological and biochemical traits, soil water content and electrical conductivity of saturation extract (ECe), and fitted slope parameters of two genotypes of maize growing in two water and two salinity levels. We found m was different between the genotypes, but no difference in g1. Salinity stress reduced m and g1, saturated stomatal conductance (gsat), the fraction of leaf epidermis area allocation to stomata (fs), and leaf nitrogen (N) content, and increased ECe, but no marked decrease in slope parameters under drought. Both m and g1 were positively correlated with gsat, fs, and leaf N content, and negatively correlated with ECe in the same fashion among the two genotypes. Salinity stress altered m and g1 by modulating gsat and fs via leaf N content. The prediction accuracy of gs was improved using salinity-specific slope parameters, with root mean square error (RMSE) being decreased from 0.056 to 0.046 and 0.066 to 0.025 mol m-2 s-1 for the Ball-Berry and Medlyn models, respectively. This study provides a modeling approach to improving the simulation of stomatal conductance under salinity.


Asunto(s)
Nitrógeno , Salinidad , Agua , Hojas de la Planta , Estomas de Plantas/fisiología , Fotosíntesis
3.
Environ Monit Assess ; 195(3): 425, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36826723

RESUMEN

Coastal upland forests are facing widespread mortality as sea-level rise accelerates and precipitation and storm regimes change. The loss of coastal forests has significant implications for the coastal carbon cycle; yet, predicting mortality likelihood is difficult due to our limited understanding of disturbance impacts on coastal forests. The manipulative, ecosystem-scale Terrestrial Ecosystem Manipulation to Probe the Effects of Storm Treatments (TEMPEST) experiment addresses the potential for freshwater and estuarine-water disturbance events to alter tree function, species composition, and ecosystem processes in a deciduous coastal forest in MD, USA. The experiment uses a large-unit (2000 m2), un-replicated experimental design, with three 50 m × 40 m plots serving as control, freshwater, and estuarine-water treatments. Transient saturation (5 h) of the entire soil rooting zone (0-30 cm) across a 2000 m2 coastal forest was attained by delivering 300 m3 of water through a spatially distributed irrigation network at a rate just above the soil infiltration rate. Our water delivery approach also elevated the water table (typically ~ 2 m belowground) and achieved extensive, low-level inundation (~ 8 cm standing water). A TEMPEST simulation approximated a 15-cm rainfall event and based on historic records, was of comparable intensity to a 10-year storm for the area. This characterization was supported by showing that Hurricane Ida's (~ 5 cm rainfall) hydrologic impacts were shorter (40% lower duration) and less expansive (80% less coverage) than those generated through experimental manipulation. Future work will apply TEMPEST treatments to evaluate coastal forest resilience to changing hydrologic disturbance regimes and identify conditions that initiate ecosystem state transitions.


Asunto(s)
Ecosistema , Suelo , Monitoreo del Ambiente , Bosques , Agua Dulce
4.
Mycorrhiza ; 31(4): 511-517, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33982140

RESUMEN

Very little is known about the impact of flooding and ground saturation on ectomycorrhizal fungi (EcM) and increasing flood events are expected with predicted climate change. To explore this, seedlings inoculated with the EcM species Tuber aestivum were exposed to a range of flood durations. Oak seedlings inoculated with T. aestivum were submerged for between 7 and 65 days. After a minimum of 114-day recovery, seedling growth measurements were recorded, and root systems were destructively sampled to measure the number of existing mycorrhizae in different zones. Number of mycorrhizae did not display correlation with seedling growth measurements. Seven days of submersion resulted in a significant reduction in mycorrhizae numbers and numbers reduced most drastically in the upper zones. Increases in duration of submersion further impacted mycorrhizae numbers in the lowest soil zone only. T. aestivum mycorrhizae can survive flood durations of at least 65 days. After flooding, mycorrhizae occur in higher numbers in the lowest soil zone, suggesting a mix of resilience and recovery. The results will aid in furthering our understanding of EcM but also may aid in conservation initiatives as well as providing insight for those whose livelihoods revolve around the collection of EcM fruiting bodies or cropping of the plant partners.


Asunto(s)
Ascomicetos , Micorrizas , Quercus , Inundaciones
5.
Environ Monit Assess ; 190(5): 298, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29675731

RESUMEN

A considerable area of soils with low abundance of plant-available phosphorus and relatively low consumption of phosphorus fertilisers recorded in Poland over the last 20-25 years suggests that the dispersion of phosphates from arable soils in Poland can be low. The literature, however, provides reports on a considerable share of Polish agriculture in phosphorus pollution of Baltic Sea waters. The literature provides no data concerning phosphorus sorption parameters of arable soils in Poland. Due to this, the study involved the analysis of sorption properties: 1-point phosphorus sorption index (PSI) and degree of phosphorus saturation, based on molar ratio P, Al, and Fe determined by the Mehlich-3 method (DPS-1M3 = P / (Al + Fe) and DPS-2M3 = P / Al), 59 soils representing the main types of texture of soils in Poland, characterised by variable content of plant-available phosphorus by Egner-Riehm DL, organic carbon, and soil pH. The obtained results suggest that the soil texture has a lower effect on sorption properties (PSI) than the degree of acidification. Sorption parameters of soils increased with soil acidification as a result of an increase in the content of Al and Fe extracted by the Mehlich-3 extract in strongly acidified soils. An important finding of our study was evidencing that within the same class of abundance in plant-available phosphorus, the soils varied in the degree of phosphorus saturation and content of active phosphorus. This suggests the possibility of losses of phosphorus even from soils with low abundance of the component provided they are characterised by a high value of parameters DPS-1M3 and DPS-2M3.


Asunto(s)
Monitoreo del Ambiente/métodos , Fósforo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , Fertilizantes/análisis , Polonia
6.
Sci Total Environ ; 595: 279-293, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28384583

RESUMEN

A mesocosm study was conducted to assess the impact of water saturation episodes and of the input of bioavailable organic matter on the biogeochemical cycles of C and N, and on the behavior of metal(loid)s in a soil highly contaminated by the destruction of arsenical shells. An instrumented mesocosm was filled with contaminated soil taken from the "Place-à-Gaz" site. Four cycles of dry and wet periods of about one month were simulated for 276days. After two dry/wet cycles, organic litter sampled on the site was added above the topsoil. The nitrogen cycle was the most impacted by the wet/dry cycles, as evidenced by a denitrification microbial process in the saturated level. The concentrations of the two most mobile pollutants, Zn and As, in the soil water and in the mesocosm leachate were, respectively, in the 0.3-1.6mM and 20-110µM ranges. After 8months of experiment, about 83g·m-3 of Zn and 3.5g·m-3 of As were leached from the soil. These important quantities represent <1% of the solid stock of this contaminant. Dry/wet cycles had no major effect on Zn mobility. However, soil saturation induced the immobilization of As by trapping As V but enhanced As III mobility. These phenomena were amplified by the presence of bioavailable organic matter. The study showed that the natural deposition of forest organic litter allowed a part of the soil's biological function to be restored but did not immobilize all the Zn and As, and even contributed to transport of As III to the surrounding environment. The main hazard of this type of site, contaminated by organo-arsenic chemical weapons, is the constitution of a stock of As that may leach into the surrounding environment for several hundred years.

7.
Emerg Infect Dis ; 22(12): 2054-2062, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27403563

RESUMEN

Rift Valley fever (RVF), a zoonotic vectorborne viral disease, causes loss of life among humans and livestock and an adverse effect on the economy of affected countries. Vaccination is the most effective way to protect livestock; however, during protracted interepidemic periods, farmers discontinue vaccination, which leads to loss of herd immunity and heavy losses of livestock when subsequent outbreaks occur. Retrospective analysis of the 2008-2011 RVF epidemics in South Africa revealed a pattern of continuous and widespread seasonal rainfall causing substantial soil saturation followed by explicit rainfall events that flooded dambos (seasonally flooded depressions), triggering outbreaks of disease. Incorporation of rainfall and soil saturation data into a prediction model for major outbreaks of RVF resulted in the correctly identified risk in nearly 90% of instances at least 1 month before outbreaks occurred; all indications are that irrigation is of major importance in the remaining 10% of outbreaks.


Asunto(s)
Lluvia , Fiebre del Valle del Rift/epidemiología , Virus de la Fiebre del Valle del Rift , Suelo , Animales , Culicidae/virología , Brotes de Enfermedades , Geografía Médica , Historia del Siglo XXI , Humanos , Ganado , Modelos Estadísticos , Estudios Retrospectivos , Fiebre del Valle del Rift/historia , Fiebre del Valle del Rift/transmisión , Riesgo , Estaciones del Año , Sudáfrica/epidemiología , Zoonosis
8.
Biosci. j. (Online) ; 30(4): 933-941, july/aug. 2014. tab
Artículo en Portugués | LILACS | ID: biblio-947863

RESUMEN

O objetivo deste trabalho foi verificar a resposta de dois cultivares de café (sensível e tolerante ao alumínio - Al), à inoculação de Gigaspora margarita e Glomus etunicatum, em Latossolo Vermelho do cerrado, com diferentes saturações por bases (30, 45 e 53 %). O experimento foi realizado em casa de vegetação, com delineamento inteiramente casualizado e em esquema fatorial 2x3x3, consistindo de 2 cultivares de (tolerante e sensível a Al), 3 tratamentos com micorriza (com inoculação de duas espécies de FMA e sem inoculação) e 3 níveis de saturação por bases do solo (V%), com cinco repetições por tratamento. As variáveis foram: altura da planta, diâmetro do caule, área foliar, massa da matéria seca da parte aérea, massa da matéria fresca de raiz, atividade da redutase do nitrato, teor de clorofila, colonização micorrízica e número de esporos. Os isolados de micorrizas proporcionaram maior crescimento do cafeeiro em solo ácido com alta concentração de Al, porém esta resposta foi verificada para ambos os cultivares quando colonizados por G. margarita. Os cultivares avaliados não mostraram diferenças quanto à tolerância ao Al quando não micorrizados.


The aim of this study was evaluate the response of two coffee cultivars (tolerant and sensitive to aluminum - Al), inoculated or not by two arbuscular mycorriza fungi (AMF), Gigaspora margarita and Glomus etunicatum, in cerrado Oxisol, with different base saturation. This experiment was conducted under greenhouse conditions, with a complete randomized design, in a 2x3x2 factorial scheme, consisting of 2 cultivars (tolerante and sensitive to Al), 3 treatments with mycorrhizal (inoculated with two species of AMF and without inoculation) and 3 levels of soil base saturation (30, 45 and 53 V%), with five replicates per treatment. The variables were: plant height, stem diameter, leaf area, shoot dry weight, root fresh weight, nitrate reductase activity, chlorophyll concentration, root colonization and number of AMF spores. Mycorrhizae isolates promoted greater response of coffee plants, in acid soil with high concentration of Al, but this response was observed for both cultivars when plants were colonized by G. margarita. The cultivars evaluated showed no differences in Al tolerance when non inoculated.


Asunto(s)
Pradera , Micorrizas , Coffea , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA