RESUMEN
Grapes are globally popular with wine production being one of the most well-known uses of grapes worldwide. Brazil has a growing wine industry, and the Serra Gaúcha region is a significant contributor to the country's wine production. Nonetheless, other states are increasing their relevance in this segment. Environmental factors and the soil microbiome (bacteria and fungi) heavily influence grape quality, shaping the crucial "terroir" for wines. Here, soil quality was assessed through nutrient analysis and bacteria microbial diversity, which could significantly impact grape health and final wine attributes. Soil samples from São Paulo's vineyards, focusing on Syrah, Malbec, and Cabernet Sauvignon, underwent chemical and microbial analysis via 16S rRNA metabarcoding and highlighted significant differences in soil composition between vineyards. Statistical analyses including PCA and CAP showcased region-based separation and intricate associations between microbiota, region, and grape variety. Correlation analysis pinpointed microbial genera linked to specific soil nutrients. Random Forest analysis identified abundant bacterial genera per grape variety and the Network analysis revealed varied co-occurrence patterns, with Cabernet Sauvignon exhibiting complex microbial interactions. This study unveils complex relationships between soil microbiota, nutrients, and diverse grape varieties in distinct vineyard regions. Understanding how these specific microorganisms are associated with grapes can improve vineyard management, grape quality, and wine production. It can also potentially optimize soil health, bolster grapevine resilience against pests and diseases, and contribute to the unique character of wines known as terroir.
RESUMEN
Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.
Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/farmacología , Suelo/química , Genes Bacterianos , Brasil , Bacterias , Farmacorresistencia Microbiana/genética , Microbiota/genética , Bosques , Microbiología del Suelo , Estiércol/microbiologíaRESUMEN
RESUMEN Las comunidades microbianas son esenciales para la productividad de los agroecosistemas. En caña de azúcar, el uso de fertilizantes nitrogenados, como práctica de manejo común, mantiene los niveles de la productividad del cultivo e influye en la diversificación del microbioma, ocasionando cambios en la diversidad de los microorganismos involucrados en el ciclo del nitrógeno (N). El objetivo de este estudio consistió en analizar la influencia de diferentes regímenes de fertilización nitrogenada sobre la estructura y la composición de la comunidad microbiana rizosférica, en un experimento de larga duración. Esta investigación permitirá establecer un régimen de fertilización más preciso. Se demostró que no existen diferencias significativas en la composición y en la estructura de la comunidad bacteriana, al usar diferentes niveles de fertilización nitrogenada en caña de azúcar. Los Phylum Acidobacteria, Firmicutes y Mortierellomycota fueron los más relacionados con las dosis de nitrógeno recomendadas, para obtener altos rendimientos agrícolas, bajo las condiciones de Cuba; sin embargo, existieron variaciones en cuanto a composición y abundancias relativas de los Phylum de la micobiota respecto a las dosis de nitrógeno aplicadas, con predominio de los Phylum Ascomycota y Basidiomycota. Fueron detectadas diferencias significativas, a nivel de género y familia, debido a la presencia de organismos probióticos en las parcelas no tratadas.
ABSTRACT Microbial communities are essential for the productivity of agroecosystems. In sugarcane, using nitrogen fertilizers as a common management practice to keep crop productivity influences the diversification of the microbiome, causing changes in the diversity of microorganisms involved in the nitrogen (N) cycle. In a long-term experiment, this study aimed to analyze the influence of different nitrogen fertilization levels on the structure and composition of the rhizospheric microbial community. This research will help to establish a more precise fertilization regime. There were no significant differences in the composition and structure of the bacterial community when using different levels of nitrogen fertilization in sugarcane. Significant differences were detected at the genus and family level due to the presence of probiotic organisms in the untreated plots. The Phylum Acidobacteria, Firmicutes, and Mortierellomycota were the most related to the recommended nitrogen doses to obtain high agricultural yields under the conditions of Cuba. However, there were variations in composition and relative abundances of the Phylum of the mycobiota concerning the doses of nitrogen applied with a predominance of the Phylum Ascomycota and Basidiomycota. Significant differences were detected at the genus and family level due to the presence of probiotic organisms in the untreated plots.
RESUMEN
BACKGROUND: Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400-4500 m a.s.l.) of the Talabre-Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. RESULTS: Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. CONCLUSIONS: In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.
RESUMEN
Salar de Atacama is located approximately 55 km south of San Pedro de Atacama in the Antofagasta region, Chile. The high UV irradiation and salt concentration and extreme drought make Salar de Atacama an ideal site to search for novel soil microorganisms with unique properties. Here, we used a metataxonomic approach (16S rRNA V3-V4) to identify and characterize the soil microbiota associated with different surface azonal vegetation formations, including strict hygrophiles (Baccharis juncea, Juncus balticus, and Schoenoplectus americanus), transitional hygrophiles (Distichlis spicata, Lycium humile, and Tessaria absinthioides), and their various combinations. We detected compositional differences among the soil surface microbiota associated with each plant formation in the sampling area. There were changes in soil microbial phylogenetic diversity from the strict to the transitional hygrophiles. Moreover, we found alterations in the abundance of bacterial phyla and genera. Halobacteriota and Actinobacteriota might have facilitated water uptake by the transitional hygrophiles. Our findings helped to elucidate the microbiota of Salar de Atacama and associate them with the strict and transitional hygrophiles indigenous to the region. These findings could be highly relevant to future research on the symbiotic relationships between microbiota and salt-tolerant plants in the face of climate change-induced desertification. IMPORTANCE The study of the composition and diversity of the wetland soil microbiota associated with hygrophilous plants in a desert ecosystem of the high Puna in northern Chile makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. These microorganisms are adapted to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration; they can be applied in various fields, such as biotechnology and astrobiology, and industries, including the pharmaceutical, food, agricultural, biofuel, cosmetic, and textile industries. These microorganisms can also be used for ecological conservation and restoration. Extreme ecosystems are a unique biological resource and biodiversity hot spots that play a crucial role in maintaining environmental sustainability. The findings could be highly relevant to future research on the symbiotic relationships between microbiota and extreme-environment-tolerant plants in the face of climate change-induced desertification.
Asunto(s)
Microbiota , Microbiología del Suelo , Humedales , Bacterias/genética , Microbiota/genética , Filogenia , Plantas , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Plant microbiome and its manipulation inaugurate a new era for plant biotechnology with the potential to benefit sustainable crop production. Here, we used the large-scale 16S rDNA sequencing analysis to unravel the dynamic, structure, and composition of exophytic and endophytic microbial communities in two hybrid commercial cultivars of sugarcane (R570 and SP80-3280), two cultivated genotypes (Saccharum officinarum and Saccharum barberi) and one wild species (Saccharum spontaneum). RESULTS: Our analysis identified 1372 amplicon sequence variants (ASVs). The microbial communities' profiles are grouped by two, root and bulk soils and stem and leave when these four components are compared. However, PCoA-based data supports that endophytes and epiphytes communities form distinct groups, revealing an active host-derived mechanism to select the resident microbiota. A strong genotype-influence on the assembly of microbial communities in Saccharum ssp. is documented. A total of 220 ASVs persisted across plant cultivars and species. The ubiquitous bacteria are two potential beneficial bacteria, Acinetobacter ssp., and Serratia symbiotica. CONCLUSIONS: The results presented support the existence of common and cultivar-specific ASVs in two commercial hybrids, two cultivated canes and one species of Saccharum across tissues (leaves, stems, and roots). Also, evidence is provided that under the experimental conditions described here, each genotype bears its microbial community with little impact from the soil conditions, except in the root system. It remains to be demonstrated which aspect, genotype, environment or both, has the most significant impact on the microbial selection in sugarcane fields.
Asunto(s)
Microbiota , Saccharum , Bacterias/genética , Genotipo , Microbiota/genética , Raíces de Plantas/microbiología , Saccharum/microbiología , Suelo , Microbiología del SueloRESUMEN
The major priority of research in the present day is to conserve the environment by reducing GHG emissions. A proposed solution by an expert panel from 195 countries meeting at COP 21 was to increase global SOC stocks by 0.4% year-1 to compensate for GHG emissions, the '4 per 1000' agreement. In this context, the application of biocrusts is a promising framework with which to increase SOC and other soil functions in the soil-plant continuum. Despite the importance of biocrusts, their application to agriculture is limited due to: (1) competition with native microbiota, (2) difficulties in applying them on a large scale, (3) a lack of studies based on carbon (C) balance and suitable for model parameterization, and (4) a lack of studies evaluating the contribution of biocrust weathering to increase C sequestration. Considering these four challenges, we propose three perspectives for biocrust application: (1) natural microbiome engineering by a host plant, using biocrusts; (2) quantifying the contribution of biocrusts to C sequestration in soils; and (3) enhanced biocrust weathering to improve C sequestration. Thus, we focus this opinion article on new challenges by using the specialized microbiome of biocrusts to be applied in a new environment to counteract the negative effects of climate change.
RESUMEN
Ongoing environmental changes are affecting physical, chemical and biological soil components. Evidence of impacts of soil changes on pollinators' and seed dispersers' behaviour, fitness and density is scarce, but growing. Here, we reviewed information on such impacts and on a number of mechanisms that may explain its propagation, taking into account the full range of resources required by the large and diverse number of species of these two important functional groups. We show that while there is substantial evidence on the effects of soil nitrogen enrichment and changes in soil water content on the quality and quantity of floral and fruit resources, little is known on the effects of changes of other soil properties (e.g. soil pH, soil structure, other nutrients). Also, the few studies showing correlations between soil changes and pollinator and seed disperser foraging behaviour or fitness do not clearly identify the mechanisms that explain such correlation. Finally, most studies (including those with nitrogen and water) are local and limited to a small number of species, and it remains unclear how variable such effects are across time and geographical regions, and the strength of interactive effects between soil properties. Increasing research on this topic, taking into consideration how impacts propagate through species interaction networks, will provide essential information to predict impacts of ongoing environmental changes and help guide conservation plans that aim to minimize impacts on ecosystem functioning. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Asunto(s)
Polinización , Dispersión de Semillas , Suelo/químicaRESUMEN
This study evaluated the hydrolytic and phosphate-solubilizing potentials of soil bacteria isolated from a red latosol (oxisol) under maize cultivation. Rhizosphere soil (SR) and non-rhizosphere soil (NR) were collected and, subsequently, distinct bacterial colonies were isolated in pure cultures. Solid culture media were employed to evaluate production of hydrolases and phosphate solubilization by the isolates. From SR and NR, 30 and 19 distinct colonial types were isolated, respectively. From 29 SR isolates, 68.9%, 65.5%, 20.7% and 24.1% displayed proteolytic, cellulolytic, amylolytic, and phosphate-solubilizing activities, respectively. From the NR isolates, 57.9% produced cellulase, 42.1% protease, 57.9% amylase and 21.0% solubilized phosphate; however, 31.6% of these isolates did not display any activity. Diverse bacteria presented combined activities, representing about 58% of the SR and NR isolates. In addition to environmental and agricultural relevance, the microbial ability to secrete enzymes related to carbon and nitrogen cycles and phosphate solubilization might be important from a biotechnological perspective.
Este estudo avaliou os potenciais hidrolítico e de solubilização de fosfato de bactérias isoladas de Latossolo Vermelho cultivado com milho. A coleta de solo rizosférico (SR) e solo não rizosférico (NR) foi realizada, sendo procedido o isolamento de colônias bacterianas em culturas puras. Meios de cultura sólidos foram utilizados na avaliação da produção de hidrolases e solubilização de fosfato pelos isolados. A partir de SR e NR foram isolados 30 e 19 tipos coloniais distintos, respectivamente. De 29 isolados de SR, 68,9%, 65,5%, 20,7% e 24,1% apresentaram atividade proteolítica, celulolítica, amilolítica e solubilização de fosfato, respectivamente. Dos isolados de NR, 57,9% produziram celulase, 42,1% protease, 57,9% amilase e 21,0% solubilizaram fosfato; contudo, 31,6% destes isolados não demonstraram qualquer atividade. Diversas bactérias apresentaram atividades combinadas, representado aproximadamente 58% dos isolados de SR e NR. Além da relevância ambiental e agrícola, a habilidade microbiana em secretar enzimas relacionadas ao ciclo do carbono e nitrogênio e a solubilização de fosfato podem ser importantes na perspectiva biotecnológica.
RESUMEN
This study evaluated the hydrolytic and phosphate-solubilizing potentials of soil bacteria isolated from a red latosol (oxisol) under maize cultivation. Rhizosphere soil (SR) and non-rhizosphere soil (NR) were collected and, subsequently, distinct bacterial colonies were isolated in pure cultures. Solid culture media were employed to evaluate production of hydrolases and phosphate solubilization by the isolates. From SR and NR, 30 and 19 distinct colonial types were isolated, respectively. From 29 SR isolates, 68.9%, 65.5%, 20.7% and 24.1% displayed proteolytic, cellulolytic, amylolytic, and phosphate-solubilizing activities, respectively. From the NR isolates, 57.9% produced cellulase, 42.1% protease, 57.9% amylase and 21.0% solubilized phosphate; however, 31.6% of these isolates did not display any activity. Diverse bacteria presented combined activities, representing about 58% of the SR and NR isolates. In addition to environmental and agricultural relevance, the microbial ability to secrete enzymes related to carbon and nitrogen cycles and phosphate solubilization might be important from a biotechnological perspective.(AU)
Este estudo avaliou os potenciais hidrolítico e de solubilização de fosfato de bactérias isoladas de Latossolo Vermelho cultivado com milho. A coleta de solo rizosférico (SR) e solo não rizosférico (NR) foi realizada, sendo procedido o isolamento de colônias bacterianas em culturas puras. Meios de cultura sólidos foram utilizados na avaliação da produção de hidrolases e solubilização de fosfato pelos isolados. A partir de SR e NR foram isolados 30 e 19 tipos coloniais distintos, respectivamente. De 29 isolados de SR, 68,9%, 65,5%, 20,7% e 24,1% apresentaram atividade proteolítica, celulolítica, amilolítica e solubilização de fosfato, respectivamente. Dos isolados de NR, 57,9% produziram celulase, 42,1% protease, 57,9% amilase e 21,0% solubilizaram fosfato; contudo, 31,6% destes isolados não demonstraram qualquer atividade. Diversas bactérias apresentaram atividades combinadas, representado aproximadamente 58% dos isolados de SR e NR. Além da relevância ambiental e agrícola, a habilidade microbiana em secretar enzimas relacionadas ao ciclo do carbono e nitrogênio e a solubilização de fosfato podem ser importantes na perspectiva biotecnológica.(AU)
RESUMEN
Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus). Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m), and all formed stable emulsions with motor oil (76-93 percent E24). Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.
Asunto(s)
Biodegradación Ambiental , Incendios , Emulsionantes , Contaminación Ambiental , Hidrocarburos/análisis , Microbiología del Suelo , Métodos , MétodosRESUMEN
Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus). Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m), and all formed stable emulsions with motor oil (76-93% E24). Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.
RESUMEN
Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus). Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m), and all formed stable emulsions with motor oil (76-93% E24). Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.