Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 477: 135317, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059298

RESUMEN

The presence and distribution of toxic organic compounds in soil pose significant challenges. Whether their distributional characteristics are more complex, especially in arid and semi-arid regions with harsh climatic conditions? This study analyzed the composition, classification, spatial distribution, and sources of 123 toxic organic compounds in 56 soil samples of coal-electricity production base. Those compounds were classified into 11 categories, mainly pesticides (41 compounds), organic synthesis intermediates (31 compounds), and drugs (23 compounds). Seventeen of those compounds were detected over the rate of 30 %, with 13 of them being under the Toxic Substances Control Act (TSCA) inventory. The primary sources of toxic organic compounds were determined using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), including the degradation of pesticide residues (22.03 %), emissions of plastic pellets (16.64 %), industrial waste emissions (12.80 %), emissions from livestock (12.74 %), plastic films (11.22 %) and coal-to-liquid projects (10.78 %). This research underscores the widespread presence of toxic organic compounds in soil, highlighting their origins and distribution patterns, which are essential for developing targeted environmental management strategies in arid and semi-arid regions.

2.
Data Brief ; 54: 110501, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779410

RESUMEN

A representative sub-surface shear wave velocity model is crucial for seismic hazard studies, as seismic waves are affected by sub-surface characteristics. The offered data in this article were mainly developed based on a quasi-static cone penetration test (q-CPT) collected at the west coast town of Aceh, Indonesia. Microtremor datasets measured at the same locations were employed to extend the depth of the sub-surface models and to validate the models. The in-situ q-CPT data were collected using a locally manufactured Begemann's type cone penetration test apparatus. Twenty seven (27) q-CPT soundings were performed to typical depths of 20 m or measuring cone tip resistances of at least 150 kg/cm2. Several empirical approaches were employed to deduce the sub-surface parameters, including shear wave velocity. To enhance the sub-surface model depth, 23 in-situ microtremor data were recorded using 3 components (3C) of Geobit S100 and RaspberrySHAKE (RS-3D) seismometers at the same locations where the q-CPTs were sounded. At the same time, these microtremor datasets were also utilized to validate the developed sub-surface shear wave velocity models using the forward modeling method. Therefore, all the proposed sub-surface shear wave models presented in this article have been validated. These sub-surface shear wave velocity models can be used for site characterization, i.e., site response analysis, seismic microzonation, or spatial urban planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA