Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt B): 1125-1134, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278038

RESUMEN

Room temperature sodium-sulfur (RT Na-S) batteries are considered as advanced energy storage technology due to their low cost and high theoretical energy density. However, challenges such as the growth of sodium dendrite and dissolution of sodium polysulfides significantly hinder the electrochemical performance. Herein, we developed a propylene carbonate (PC)-based electrolyte with Methyl 2-Fluoroisobutyrate (MFB) as an additive. The ester group in the MFB additive is capable of participating in and reconfiguring the coordination of their Na+ solvated structures, thereby lowering the desolvation barrier and regulating the Na anode's interfacial reaction and nucleation behavior. The polar C-F bond at the other end helps to reduce the lowest unoccupied molecular orbital (LUMO) energy of the MFB additive, enabling the preferential decomposition of MFB to form the F-rich inorganic phase strong polar solid electrolyte interphase (SEI), contributing to the inhibition of Na dendrite growth, the accumulation of dead Na. In addition, NaF-riched cathode electrolyte interphase (CEI) was also observed on sulfur-based cathode, which can effectively inhibited the shuttle effect. Consequently, the developed RT Na-S battery exhibit excellent electrochemical performance.

2.
J Colloid Interface Sci ; 678(Pt A): 292-300, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39208757

RESUMEN

Room temperature sodium-sulfur (RT-Na/S) batteries are a promising candidate for large-scale energy storage systems owing to their low manufacturing cost and high energy density. However, the severe shuttle effects and sluggish reaction kinetics hinder their practical application. Here, a Fe3Se4 nanoparticle anchored three-dimensional nitrogen-doped porous carbon nanosheet was designed as a functional defender to inhibit the shuttle effect and achieve high sulfur utilization. The porous carbon nanosheet builds a fast platform for electron and ion transport and acts as a limiting barrier for polysulfide dissolution and shuttling. Additionally, Fe3Se4 nanoparticles are incorporated to enhance the chemical anchoring and catalytic activity of polysulfides. The ex-situ characterization revealed that the Fe sites can feed electrons to polysulfides, thus facilitating the conversion of long-chain polysulfides to Na2S, resulting in high sulfur availability (323 mAh/g at 2 A/g) and long-term cycle life (72 % capacity retention at 1 A/g for 500 cycles).

3.
Angew Chem Int Ed Engl ; : e202412287, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206675

RESUMEN

The practical application of room-temperature sodium-sulfur (RT Na-S) batteries was severely hindered by inhomogeneous sodium deposition and notorious sodium polysulfides (NaPSs) shuttling. Herein, novel sodium thiotellurate (Na2TeS3) interfaces are constructed both on the cathode and anode for Na-S batteries to simultaneously address the Na dendritic growth and polysulfide shuttling. On the cathode side, a heterostructural sodium sulfide/sodium telluride embedded in a carbon matrix (Na2S/Na2Te@C) was rationally designed through a facile carbothermal reaction, where the Na2TeS3interface will be in-situ chemically obtained. Such an interface provides abundant electron/ion diffusion channels and ensures rich catalytic surfaces toward Na-S redox, which could significantly improve the utilization of active material and alleviate polysulfide shuttling in the cathode. On the anode side, the inevitable formation of soluble polytellurosulfides species will migrate on Na anode surface, finally constructing a compact and smooth solid-electrolyte Na2TeS3 interphase (SEI) layer. Such electrochemical formed Na2TeS3 interface can significantly enhance ionic transport and stabilize Na deposition, thus realizing dendrite-free Na-metal plating/stripping. Benefitting from these advantages, an anode-free cell fabricated with the Na2S/Na2Te@C cathode exhibits an ultrahigh initial discharge capacity of 634 mAh g-1 at 0.1 C, which could pave a new path to design high-performance cathodes for anode-free RT Na-S batteries.

4.
Angew Chem Int Ed Engl ; : e202404816, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38788189

RESUMEN

Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnOx) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 (MXene) forms an amorphous/crystalline (A/C) interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1 mg cm-2), ultra-thin (~200 nm), and ultra-robust (modulus=4.9 GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3 mAh g-1 and an average Coulombic efficiency of 99.9 % after 400 cycles at 0.5 C.

5.
Small ; 20(34): e2400164, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38573934

RESUMEN

Captured by high theoretical capacity and low-cost, Sodium-Sulfur (Na-S) batteries have been deemed as promising energy-storage systems. However, their electrochemical properties, containing both cycling and rate properties, still suffer from the notorious "shuttle effect" of polysulfide. Herein, through the effective regulation of pore sizes, a series of S/SiO2 cathode materials are obtained. Benefitting from the abundant pore channels of SiO2 particles, the sulfur loading is as high as 76.3%. Importantly, a suitable pore size can lead to adequate reaction and rapid diffusion behaviors, resulting in excellent electrochemical performances. Specifically, at 2.0 A g-1, the initial capacity of the as-optimized sample can be up to 1370.6 mAh g-1. Surprisingly, even after 1050 cycles, it could achieve a high reversible capacity of 1280.8 mAh g-1 with an attenuation rate of 0.089%. At 5.0 A g-1, after 500 cycles, the capacity can still remain ≈ 1132.6 mAh g-1 (capacity retention rate, 97.5%). Given this, the work is anticipated to offer an effective strategy for advanced electrodes for Na-S batteries.

6.
Adv Sci (Weinh) ; 11(21): e2308180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594907

RESUMEN

Room-temperature sodium-sulfur (RT Na/S) batteries have received increasing attention for the next generation of large-scale energy storage, yet they are hindered by the severe dissolution of polysulfides, sluggish redox kinetic, and incomplete conversion of sodium polysulfides (NaPSs). Herein, the study proposes a dual-modulating strategy of the electronic structure of electrocatalyst and sulfur to accelerate the conversion of NaPSs. The selenium-modulated ZnS nanocrystals with electron rearrangement in hierarchical structured spherical carbon (Se-ZnS/HSC) facilitate Na+ transport and catalyze the conversion between short-chain sulfur and Na2S. And the in situ introduced Se within S can enhance conductivity and form an S─Se bond, suppressing the "polysulfides shuttle". Accordingly, the S@Se-ZnS/HSC cathode exhibits a specific capacity of as high as 1302.5 mAh g-1 at 0.1 A g-1 and ultrahigh-rate capability (676.9 mAh g-1 at 5.0 A g-1). Even at -10 °C, this cathode still delivers a high reversible capacity of 401.2 mAh g-1 at 0.05 A g-1 and 94% of the original capacitance after 50 cycles. This work provides a novel design idea for high-performance Na/S batteries.

7.
Adv Mater ; 36(25): e2402337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458611

RESUMEN

Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.

8.
Adv Mater ; 36(21): e2312207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329004

RESUMEN

Linearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high-rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high-rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g-1, the Na-S battery retains a capacity of 325 mAh g-1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high-performance energy devices.

9.
Angew Chem Int Ed Engl ; 63(12): e202320060, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38285010

RESUMEN

Room-temperature sodium-sulfur (RT Na-S) batteries are promising for low-cost and large-scale energy storage applications. However, these batteries are plagued by safety concerns due to the highly flammable nature of conventional electrolytes. Although non-flammable electrolytes eliminate the risk of fire, they often result in compromised battery performance due to poor compatibility with sodium metal anode and sulfur cathode. Herein, we develop an additive of tin trifluoromethanesulfonate (Sn(OTf)2 ) in non-flammable phosphate electrolytes to improve the cycling stability of RT Na-S batteries via modulating the Na+ solvation environment and interface chemistry. The additive reduces the Na+ desolvation energy and enhances the electrolyte stability. Moreover, it facilitates the construction of Na-Sn alloy-based anode solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). These interphases help to suppress the growth of Na dendrites and the dissolution/shuttling of sodium polysulfides (NaPSs), resulting in improved reversible capacity. Specifically, the Na-S battery with the designed electrolyte boosts the capacity from 322 to 906 mAh g-1 at 0.5 A g-1 . This study provides valuable insights for the development of safe and high-performance electrolytes in RT Na-S batteries.

10.
Sci Bull (Beijing) ; 69(2): 197-208, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37993338

RESUMEN

Resolving low sulfur reaction activity and severe polysulfide dissolution remains challenging in metal-sulfur batteries. Motivated by a theoretical prediction, herein, we strategically propose nitrogen-vacancy tantalum nitride (Ta3N5-x) impregnated inside the interconnected nanopores of nitrogen-decorated carbon matrix as a new electrocatalyst for regulating sulfur redox reactions in room-temperature sodium-sulfur batteries. Through a pore-constriction mechanism, the nitrogen vacancies are controllably constructed during the nucleation of Ta3N5-x. The defect manipulation on the local environment enables well-regulated Ta 5d-orbital energy level, not only modulating band structure toward enhanced intrinsic conductivity of Ta-based materials, but also promoting polysulfide stabilization and achieving bifunctional catalytic capability toward completely reversible polysulfide conversion. Moreover, the interconnected continuous Ta3N5-x-in-pore structure facilitates electron and sodium-ion transport and accommodates volume expansion of sulfur species while suppressing their shuttle behavior. Due to these attributes, the as-developed Ta3N5-x-based electrode achieves superior rate capability of 730 mAh g-1 at 3.35 A g-1, long-term cycling stability over 2000 cycles, and high areal capacity over 6 mAh cm-2 under high sulfur loading of 6.2 mg cm-2. This work not only presents a new sulfur electrocatalyst candidate for metal-sulfur batteries, but also sheds light on the controllable material design of defect structure in hopes of inspiring new ideas and directions for future research.

11.
Small ; 20(23): e2310225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38158336

RESUMEN

Room-temperature sodium-sulfur (RT Na-S) batteries hold immense promise as next-generation energy storage systems, owing to their exceptionally high theoretical capacity, abundant resources, eco-friendliness, and affordability. Nevertheless, their practical application is impeded by the shuttling effect of sodium polysulfides (NaPSs) and sluggish sulfur redox kinetics. In this study, an advanced strategy by designing 3D flower-like molybdenum telluride (MoTe2) as an efficient catalyst to promote sulfur redox for RT Na-S batteries is presented. The unique 3D flower-like MoTe2 effectively prevents NaPS shuttling and simultaneously offers abundant active catalytic sites facilitating polysulfide redox. Consequently, the obtained MoTe2/S cathode delivers an outstanding initial reversible capacity of 1015 mAh g-1 at 0.1 C, along with robust cycling stability of retaining 498 mAh g-1 at 1 C after 500 cycles. In addition, pouch cells are fabricated with the MoTe2 additive to deliver an ultrahigh initial discharge capacity of 890 mAh g-1 and remain stable over 40 cycles under practically necessary conditions, demonstrating the potential application in the commercialization of RT Na-S batteries.

12.
Small Methods ; 7(6): e2201728, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36995022

RESUMEN

Due to the high theoretical energy density, low cost, and rich abundance of sodium and sulfur, room-temperature sodium-sulfur (RT Na-S) batteries are investigated as the promising energy storage system. However, the inherent insulation of the S8 , the dissolution and shuttle of the intermediate sodium polysulfides (NaPSs), and especially the sluggish conversion kinetics, restrict the commercial application of the RT Na-S batteries. To address these issues, various catalysts are developed to immobilize the soluble NaPSs and accelerate the conversion kinetics. Among them, the polar catalysts display impressive performance. Polar catalysts not only can significantly accelerate (or alter) the redox process, but also can adsorb polar NaPSs through polar-polar interaction because of their intrinsic polarity, thus inhibiting the notorious shuttle effect. Herein, the recent advances in the electrocatalytic effect of polar catalysts on the manipulation of S speciation pathways in RT Na-S batteries are reviewed. Furthermore, challenges and research directions to realize rapid and reversible sulfur conversion are put forward to promote the practical application of RT Na-S batteries.

13.
Adv Mater ; 35(24): e2300841, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929515

RESUMEN

Sodium-sulfur (Na-S) batteries with durable Na-metal stability, shuttle-free cyclability, and long lifespan are promising to large-scale energy storages. However, meeting these stringent requirements poses huge challenges with the existing electrolytes. Herein, a localized saturated electrolyte (LSE) is proposed with 2-methyltetrahydrofuran (MeTHF) as an inner sheath solvent, which represents a new category of electrolyte for Na-S system. Unlike the traditional high concentration electrolytes, the LSE is realized with a low salt-to-solvent ratio and low diluent-to-solvent ratio, which pushes the limit of localized high concentration electrolyte (LHCE). The appropriate molecular structure and solvation ability of MeTHF regulate a saturated inner sheath, which features a reinforced coordination of Na+ to anions, enlarged Na+ -solvent distance, and weakened anion-diluent interaction. Such electrolyte configuration is found to be the key to build a sustainable interphase and a quasi-solid-solid sulfur redox process, making a dendrite-inhibited and shuttle-free Na-S battery possible. With this electrolyte, pouch cells with decent cycling performance under rather demanding conditions are demonstrated.

14.
Adv Mater ; 35(8): e2208873, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36366906

RESUMEN

The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is hindered by the insulated sulfur, the severe shuttle effect of sodium polysulfides, and insufficient polysulfide conversion. Herein, on the basis of first principles calculations, single-atom vanadium anchored on a 3D nitrogen-doped hierarchical porous carbon matrix (denoted as 3D-PNCV) is designed and fabricated to enhance sulfur reactivity, and adsorption and catalytic conversion performance of sodium polysulfide. The 3D-PNCV host with abundant and active V sites, hierarchical porous structure, high electrical conductivity, and strong chemical adsorption/conversion ability of V-N bonding can immobilize the polysulfides and promote reversibly catalytic conversion of polysulfides toward Na2 S. Therefore, as-fabricated RT Na-S batteries can achieve a high reversible capacity (445 mAh g-1 over 800 cycles at 5 A g-1 ) and excellent rate capability (224 mAh g-1 at 10 A g-1 ). The electrocatalysis mechanism of sodium polysulfides is further experimentally and theoretically revealed, which provides a new strategy to develop the highly stable RT Na-S batteries.

15.
Adv Mater ; 35(1): e2206828, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308045

RESUMEN

Room-temperature sodium-sulfur (RT-Na/S) batteries possess high potential for grid-scale stationary energy storage due to their low cost and high energy density. However, the issues arising from the low S mass loading and poor cycling stability caused by the shuttle effect of polysulfides seriously limit their operating capacity and cycling capability. Herein, sulfur-doped graphene frameworks supporting atomically dispersed 2H-MoS2 and Mo1 (S@MoS2 -Mo1 /SGF) with a record high sulfur mass loading of 80.9 wt.% are synthesized as an integrated dual active sites cathode for RT-Na/S batteries. Impressively, the as-prepared S@MoS2 -Mo1 /SGF display unprecedented cyclic stability with a high initial capacity of 1017 mAh g-1 at 0.1 A g-1 and a low-capacity fading rate of 0.05% per cycle over 1000 cycles. Experimental and computational results including X-ray absorption spectroscopy, in situ synchrotron X-ray diffraction and density-functional theory calculations reveal that atomic-level Mo in this integrated dual-active-site forms a delocalized electron system, which could improve the reactivity of sulfur and reaction reversibility of S and Na, greatly alleviating the shuttle effect. The findings not only provide an effective strategy to fabricate high-performance dual-site cathodes, but also deepen the understanding of their enhancement mechanisms at an atomic level.

16.
J Colloid Interface Sci ; 629(Pt B): 76-86, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152582

RESUMEN

The practical applications of room-temperature sodium-sulfur (RT Na-S) batteries have been greatly hindered by the natural sluggish reaction kinetics of sulfur and the shuttle effect of sodium polysulfide (NaPSs). Herein, oxygen vacancy (OV)-mediated amorphous GeOx/nitrogen doped carbon (donated as GeOx/NC) composites were well designed as sulfur hosts for RT Na-S batteries. Experimental and density functional theory studies show that the introduction of oxygen vacancies on GeOx/NC can effectively immobilize polysulfides and accelerate the redox kinetics of polysulfides. Meanwhile, the micro-and mesoporous framework, acting as a reactor for storing active S, is conducive to alleviating the expansion of S during the charging/discharging process. Consequently, the S@GeOx/NC cathode affords a reversible capacity of 1017 mA h g-1 at 0.1 A g-1 after 100 cycles, outstanding rate capability of 333 mA h g-1 at 10.0 A g-1 and long lifespan cyclability of 385 mAh g-1 at 1 A g-1 after 1200 cycles. This work furnishes a new way for the rational design of metal oxides with oxygen vacancies and boosts the application for RT Na-S batteries.

17.
Adv Mater ; 34(32): e2204214, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35699691

RESUMEN

Seeking an optimal catalyst to accelerate conversion reaction kinetics of room-temperature sodium-sulfur (RT Na-S) batteries is crucial for improving their electrochemical performance and promoting the practical applications. Herein, theoretical calculations of interfacial interactions of catalysts and polysulfides in terms of the surface adsorption state, interfacial ions migration, and electronic concentration around the Fermi level are systematically proposed as guiding principles of catalyst selection for RT Na-S batteries. As a case, MoN catalyst is accurately selected from transition metal nitrides with different d orbital electrons, and for experiment, it is introduced into the carbon nanofibers as a dual-functioning host (MoN@CNFs). The MoN@CNFs can effectively anchor polysulfides and accelerate their conversion reaction. In addition, for the sodium anode, the MoN@CNFs can also induce uniform deposition of Na and inhibit dendrite growth, which are supported by in situ characterizations and finite element simulation technique. As a result, the as-prepared RT Na-S battery displays high reversible capacity of 990 mAh g-1 at 0.2 A g-1 after 100 cycles and long lifespan over 1500 cycles at 2 A g-1 . Even with high S loading of 5 mg cm-2 , the RT Na-S battery still exhibits a high areal capacity of 2.5 mAh cm-2 .

18.
Angew Chem Int Ed Engl ; 61(30): e202205416, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35538589

RESUMEN

Rechargeable room-temperature sodium-sulfur (RT Na-S) batteries are a promising energy storage technology, owing to the merits of high energy density and low cost. However, their electrochemical performance has been severely hindered by the poor compatibility between the existing electrolytes and the electrodes. Here, we demonstrate that an all-fluorinated electrolyte, containing 2,2,2-trifluoro-N,N-dimethylacetamide (FDMA) solvent, 1,1,2,2-tetrafluoroethyl methyl ether (MTFE) anti-solvent and fluoroethylene carbonate (FEC) additive, can greatly enhance the reversibility and cyclability of RT Na-S batteries. A NaF- and Na3 N-rich cathode electrolyte interphase derived from FDMA and FEC enables a "quasi-solid-phase" Na-S conversion, eliminating the shuttle of polysulfides. The MTFE not only reduces polysulfide dissolution, but also further stabilizes the Na anode via a tailored solvation structure. The as-developed RT Na-S batteries deliver a high capacity, long lifespan, and enhanced safety.

19.
Natl Sci Rev ; 9(3): nwab050, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35401989

RESUMEN

Room-temperature sodium-sulfur batteries (RT-Na-S batteries) are attractive for large-scale energy storage applications owing to their high storage capacity as well as the rich abundance and low cost of the materials. Unfortunately, their practical application is hampered by severe challenges, such as low conductivity of sulfur and its reduced products, volume expansion, polysulfide shuttling effect and Na dendrite formation, which can lead to rapid capacity fading. The review discusses the Na-S-energy-storage chemistry, highlighting its promise, key challenges and potential strategies for large-scale energy storage systems. Specifically, we review the electrochemical principles and the current technical challenges of RT-Na-S batteries, and discuss the strategies to address these obstacles. In particular, we give a comprehensive review of recent progresses in cathodes, anodes, electrolytes, separators and cell configurations, and provide a forward-looking perspective on strategies toward robust high-energy-density RT-Na-S batteries.

20.
Small ; 18(43): e2107368, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35315576

RESUMEN

Metal-sulfur batteries exhibit great potential as next-generation rechargeable batteries due to the low sulfur cost and high theoretical energy density. Sodium-sulfur (Na-S) batteries present higher feasibility of long-term development than lithium-sulfur (Li-S) batteries in technoeconomic and geopolitical terms. Both lithium and sodium are alkali metal elements with body-centered cubic structures, leading to similar physical and chemical properties and exposing similar issues when employed as the anode in metal-sulfur batteries. Indeed, some inspiration for mechanism researches and strategies in Na-S systems comes from the more mature Li-S systems. However, the dissimilarities in microscopic characteristics determine that Na-S is not a direct Li-S analogue. Herein, the daunting challenges derived by the differences of fundamental characteristics in Na-S and Li-S systems are discussed. And the corresponding strategies in Na-S batteries are reviewed. Finally, general conclusions and perspectives toward the research direction are presented based on the dissimilarities between both systems. This review attempts to provide important insights to facilitate the assimilation of the available knowledge on Li-S systems for accelerating the development of Na-S batteries on the basis of their dissimilarities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA