Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Environ Toxicol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268877

RESUMEN

Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by mitochondrial dysfunction of retinal pigment epithelium (RPE) cells. EUK-134 is a mimetic of SOD2 and catalase, widely used for its antioxidant properties in models of light-induced damage or oxidative stress. However, its effects on the retina are not yet clear. Here, we investigated the capability of EUK-134 in averting AMD using sodium iodate (NaIO3)-induced Balb/c mouse and ARPE-19 cells (adult RPE cell line). In vivo, EUK-134 effectively antagonized NaIO3-induced retinal deformation and prevented outer and inner nuclear layer thinning. In addition, it was found that the EUK-134-treated group significantly down-regulated the expression of cleaved caspase-3 compared with the group treated with NaIO3 alone. Our results found that EUK-134 notably improved cell viability by preventing mitochondrial ROS accumulation-induced membrane potential depolarization-mediated apoptosis in NaIO3-inducted ARPE-19 cells. Furthermore, we found that EUK-134 could inhibit p-ERK, p-p38, p-JNK, p-p53, Bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP by increasing Bcl-2 protein expression. Additionally, we employed MAPK pathway inhibitors by SB203580 (a p38 inhibitor), U0126 (an ERK inhibitor), and SP600125 (a JNK inhibitor) to corroborate the aforementioned observation. The results support that EUK-134 may effectively prevent mitochondrial oxidative stress-mediated retinal apoptosis in NaIO3-induced retinopathy.

2.
Exp Eye Res ; 247: 110050, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151777

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. Sodium iodate (NaIO3), a stable oxidizing agent, has been injected to establish a reproducible model of oxidative stress-induced RPE and photoreceptor death. The aim of our study was to evaluate the morphological and molecular changes of retina and retinal pigment epithelium (RPE)-choroid in NaIO3-treated mouse using multimodal fundus imaging and label-free quantitative proteomics analysis. Here, we found that following NaIO3 injection, retinal degeneration was evident. Fundus photographs showed numerous scattered yellow-white speckled deposits. Optical coherence tomography (OCT) images indicated disruption of the retinal layers, damage of the RPE layer and accumulation of hyper-reflective matter in multiple layers of the outer retina. Widespread foci of a high fundus autofluorescence (FAF) signal were noticed. Fundus fluorescein angiography (FFA) revealed diffuse intense transmitted fluorescence mixed with scattered spot-like blocked fluorescence. Indocyanine green angiography (ICGA) presented punctate hyperfluorescence. Due to the atrophy of the RPE and Bruch's membrane and choroidal capillary complex, the larger choroidal vessels become more prominent in ICGA and optical coherence tomography angiography (OCTA). Transmission electron microscope (TEM) illustrated abnormal material accumulation and damaged mitochondria. Bioinformatics analysis of proteomics revealed that the differentially expressed proteins participated in diverse biological processes, encompassing phototransduction, NOD-like receptor signaling pathway, phagosome, necroptosis, and cell adhesion molecules. In conclusion, by multimodal imaging, we described the phenotype of NaIO3-treated mouse model mimicking oxidative stress-induced RPE and photoreceptor death in detail. In addition, proteomics analysis identified differentially expressed proteins and significant enrichment pathways, providing insights for future research, although the exact mechanism of oxidative stress-induced RPE and photoreceptor death remains incompletely understood.


Asunto(s)
Coroides , Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Yodatos , Ratones Endogámicos C57BL , Imagen Multimodal , Proteómica , Epitelio Pigmentado de la Retina , Tomografía de Coherencia Óptica , Animales , Yodatos/toxicidad , Proteómica/métodos , Ratones , Tomografía de Coherencia Óptica/métodos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Angiografía con Fluoresceína/métodos , Coroides/metabolismo , Coroides/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/patología , Degeneración Retiniana/inducido químicamente , Estrés Oxidativo , Microscopía Electrónica de Transmisión , Proteínas del Ojo/metabolismo
3.
J Ethnopharmacol ; 334: 118565, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002821

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps cicadae (C.cicadae), named "Chan Hua", an anamorph of Isaria cicadae Miquel, is an entomogenous complex formed by fungi parasitizing on the larvae of cicadas and belongs to the Claviciptaceae family and the genus Codyceps, which traditionally holds a significant place in Chinese ethnopharmacology, specifically for eye clarity and as a remedy for age-related ocular conditions. The underlying mechanisms contributing to its eyesight enhancement and potential effectiveness against Age-related macular degeneration (AMD) remain unexplored. AIM OF THE STUDY: This study aims to elucidate the protective role of C.cicadae and its active ingredient, Myriocin (Myr), against AMD. MATERIALS AND METHODS: A chemical inducer was employed to make retinal pigment epithelium (RPE) damage in vitro and in vivo. The key ingredients of C.cicadae and their related mechanisms for anti-AMD were studied through bioinformatic analysis and molecular biological approaches. RESULTS: Myr was identified through high-performance liquid chromatography (HPLC) as an active ingredient in C.cicadae, and demonstrated a protective effect on RPE cells, reducing the structural damage and cell death induced by sodium iodate (SI). Further, Myr reduced eyelid secretions in AMD mice and restored their retinal structure and function. The differentially expressed genes (DEGs) in Myr treatment are primarily associated with TNF and Necroptosis signaling pathways. Molecular docking indicated a strong affinity between TNF and Myr. Myr inhibited the TNF signaling pathway thereby reducing the expression of inflammatory factors in ARPE-19 cells. Additionally, Myr had consistent action with the necroptosis inhibitor Necrostatin-1 (Nec-1), inhibited the RIPK1/RIPK3/MLKL pathway thereby protecting ARPE-19 cells. CONCLUSION: The findings present Myr, as a potent protector against SI-induced AMD, predominantly through modulation of the TNF-RIPK1/RIPK3/MLKL signaling pathway, offering the insights of therapeutic C.cicadae as viable candidates for AMD treatment.


Asunto(s)
Cordyceps , Yodatos , Degeneración Macular , Epitelio Pigmentado de la Retina , Factor de Necrosis Tumoral alfa , Animales , Degeneración Macular/tratamiento farmacológico , Cordyceps/química , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Línea Celular , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Masculino , Necroptosis/efectos de los fármacos , Ácidos Grasos Monoinsaturados
4.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890703

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Asunto(s)
Cumarinas , Animales , Ratones , Cumarinas/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Retina/metabolismo , Retina/efectos de los fármacos , Retina/patología , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Proteína Sequestosoma-1/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Yodatos/toxicidad
5.
J Theor Biol ; 592: 111879, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-38909882

RESUMEN

BACKGROUND: Iron-induced oxidative stress was thought to be the reason why the a-wave amplitude of the electroretinogram (ERG) dropped when iron ions were present. It is assumed that reactive oxygen species (ROS) are generated in the presence of iron ions, and this leads to a decrease in hyperpolarization of the photoreceptor. It is known that in age-related macular degeneration (AMD), sodium iodate can induce oxidative stress, apoptosis, and retinal damage, which mimic the effects of clinical AMD. Here, the reduction of the a-wave amplitude in mice with sodium iodate-induced age-related macular degeneration is explained. METHODS: The leading edge of the a-wave is divided into voltages developed by cones and rods. The same oxidative stress model is applied here since sodium iodate causes the creation of ROS in a manner similar to that caused by iron ions, with the exception that the retina is treated as a circuit of various resistances when computing the photoresponse. Moreover, sodium iodate also leads to apoptosis and, hence, may cause misalignment in cones (not in rods) during the initial stage of apoptosis in AMD. To include the effects of apoptosis and shortening in cones and rods, we have used a factor representing the fraction of total cones and rods that are alive. To include the effect of misalignment of cones on the reduction of the a-wave amplitude, we have used the Stiles-Crawford function to calculate the number of photoisomerizations occurring in a photoreceptor misaligned at an angle θ. The results are compared with experimental data. RESULTS: In sodium iodate-treated eyes, the ROS produced can attract calcium ions in the photoreceptor, which increases the calcium influx. In the case of the cones, the inclusion of the misalignment angle in the phototransduction process helps in determining the voltage and slope of the voltage vs. time graph.The smaller the fraction of active photoreceptors, the smaller the amplitude of the a-wave. The calcium influx, misaligned photoreceptors, and total photoreceptor loss all cause the amplitude of the a-wave to decrease, and at any time from the beginning of phototransduction cascade, the calcium influx causes the slope of the a-wave to increase. CONCLUSION: The reduction in the a-wave amplitude in the eyes of sodium iodate-treated mice is attributed to oxidative stress in both cones and rods and cone misalignment, which ultimately lead to apoptosis and vision loss in AMD.


Asunto(s)
Electrorretinografía , Yodatos , Degeneración Macular , Estrés Oxidativo , Especies Reactivas de Oxígeno , Células Fotorreceptoras Retinianas Conos , Animales , Degeneración Macular/patología , Degeneración Macular/fisiopatología , Degeneración Macular/inducido químicamente , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Apoptosis/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Modelos Animales de Enfermedad , Modelos Biológicos
6.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790643

RESUMEN

Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood-retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration.

7.
J Ocul Pharmacol Ther ; 40(6): 397-406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38608232

RESUMEN

Purpose: Previously, we identified increased retinal degeneration and cytokine response in a mouse model of dry age-related macular degeneration (AMD) in the presence of systemic inflammation from rheumatoid arthritis (RA). Histone deacetylases (HDACs) regulate cytokine production by reducing acetylation and are found to be dysregulated in inflammatory diseases, including RA and AMD. Therefore, this current study investigates the effect of HDAC inhibition on AMD progression in the presence of systemic inflammation. Methods: Collagen induced arthritis (CIA) was induced in C57BL6J mice, followed by sodium iodate (NaIO3)-induced retinal degeneration. Mice were treated with a selective HDAC class I inhibitor, MS-275, and retinal structure [optical coherence tomography (OCT)], function (electroretinography), and molecular changes quantitative real-time polymerase chain reaction (RT-qPCR, Western Blot) were assessed. Results: NaIO3 retinal damage was diminished in CIA mice treated with MS-275 (P ≤ 0.05). While no significant difference was observed in retinal pigment epithelium (RPE) function, a trend in increased c-wave amplitude was detected in CIA + NaIO3 mice treated with MS-275. Finally, we identified decreased Hdac1, Hdac3, and Cxcl9 expression in CIA + NaIO3 mouse RPE/choroid when treated with MS-275 (P ≤ 0.05). Conclusions: Our data demonstrate that HDAC inhibition can reduce the additive effect of NaIO3-induced retinal degeneration in the presence of systemic inflammation by CIA as measured by OCT analysis. In addition, HDAC inhibition in CIA + NaIO3 treated mice resulted in reduced cytokine production. These findings are highly innovative and provide additional support to the therapeutic potential of HDAC inhibitors for dry AMD treatment.


Asunto(s)
Modelos Animales de Enfermedad , Histona Desacetilasa 1 , Inhibidores de Histona Desacetilasas , Inflamación , Yodatos , Ratones Endogámicos C57BL , Piridinas , Tomografía de Coherencia Óptica , Animales , Ratones , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/uso terapéutico , Inflamación/tratamiento farmacológico , Yodatos/administración & dosificación , Yodatos/toxicidad , Piridinas/farmacología , Piridinas/administración & dosificación , Piridinas/uso terapéutico , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Benzamidas/farmacología , Benzamidas/administración & dosificación , Benzamidas/uso terapéutico , Histona Desacetilasas/metabolismo , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Masculino , Electrorretinografía , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/administración & dosificación , Atrofia Geográfica/tratamiento farmacológico
8.
Exp Eye Res ; 242: 109879, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570182

RESUMEN

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Electrorretinografía , Yodatos , Ratones Endogámicos C57BL , Degeneración Retiniana , Tamoxifeno , Tomografía de Coherencia Óptica , Animales , Yodatos/toxicidad , Ratones , Tomografía de Coherencia Óptica/métodos , Tamoxifeno/farmacología , Degeneración Retiniana/prevención & control , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Rodopsina/metabolismo , Rodopsina/genética , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , ARN Mensajero/genética , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Opsinas de Bastones/metabolismo
9.
Iran J Basic Med Sci ; 27(3): 286-296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333749

RESUMEN

Objectives: Age-related macular degeneration (AMD) is one of the eye diseases that can affect a person's central vision. Retinal pigment epithelium (RPE) cells are damaged in this medical condition and some pigments are presented in these cells. Here, we aimed to investigate melanin and lipofuscin granules of RPE cells as a precursor of AMD. Materials and Methods: Hooded rats (n=18) were divided into two groups and received 100 µl of sodium iodate (SI) into the retro-orbital sinus of their eyes at 40 and 60 mg/kg doses. The total number of melanin and lipofuscin granules, different types of granules, cytoplasmic dispersion of granules as well as morphological changes in the shape and number of nuclei of RPE cells were evaluated over the course of 1-30 days. Results: The total number of melanin pigments increases over time at a dose of 40 mg/kg and decreases at a dose of 60 mg/kg. Also, the total number of lipofuscin granules in 40 mg/kg increases over time and decreases in 60 mg/kg. Autofluorescent intensity (AF) is also increased at 40 mg/kg, but at 60 mg/kg, the highest intensity is on day 7. Also, the highest number of multinucleated giant cells was on day 7 at 60 mg/kg and the most changes in cell appearance due to sodium iodate injection were seen on the first day after injection. Conclusion: We demonstrated that granules and autofluorescent intensity appear to decrease at high doses of sodium iodate, which is similar to the advanced stage of the AMD disease, where the number of granules and AF intensity increase in the middle and even early stages of the disease.

10.
Exp Eye Res ; 238: 109728, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972750

RESUMEN

The sodium iodate (NaIO3) model of increased oxidative stress recapitulates dry AMD features such as patchy RPE loss, secondary photoreceptors, and underlying choriocapillaris death, allowing longitudinal evaluation of the retinal structure. Due to the time- and dose-dependent degeneration observed in diverse animal models, this preclinical model has become one of the most studied models. The events leading to RPE cell death post- NaIO3 injection have been extensively studied, and here we have reviewed different modalities of cell death, including apoptosis, necroptosis, ferroptosis, and pyroptosis with a particular focus on findings associated with in vivo and in vitro NaIO3 studies on RPE cell death. Because the fundamental cause of vision loss in patients with dry AMD is the death of these same cells affected by NaIO3, studies using NaIO3 can provide valuable insights into RPE and photoreceptor cell death mechanisms and can help understand mechanisms behind RPE degeneration in AMD.


Asunto(s)
Apoptosis , Epitelio Pigmentado de la Retina , Animales , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Retina , Muerte Celular
11.
Exp Eye Res ; 238: 109741, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056552

RESUMEN

A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.


Asunto(s)
Neovascularización Coroidal , Peróxido de Hidrógeno , Adulto , Humanos , Animales , Ratones , Melaninas , Ratones Endogámicos C57BL , Coroides/irrigación sanguínea , Retina/patología , Neovascularización Coroidal/patología
12.
Exp Eye Res ; 239: 109772, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158173

RESUMEN

Sodium iodate (NaIO3) is a commonly used model for age-related macular degeneration (AMD), but its rapid and severe induction of retinal pigment epithelial (RPE) and photoreceptor degeneration can lead to the premature dismissal of potentially effective therapeutics. Additionally, little is known about how sex and age affect the retinal response to NaIO3. This study aims to establish a less severe yet reproducible regimen by testing low doses of NaIO3 while considering age- and sex-related effects, enabling a broader range of therapeutic evaluations. In this study, young (3-5 months) and old (18-24 months) male and female C57Bl/6J mice were given an intraperitoneal (IP) injection of 15, 20, or 25 mg/kg NaIO3. Damage assessment one week post-injection included in vivo imaging, histological examination, and qRT-PCR analysis. The results revealed that young mice showed no damage at 15 mg/kg IP NaIO3, with varying degrees of damage observed at 20 mg/kg. At 25 mg/kg, most young mice displayed widespread retinal damage, with females exhibiting less retinal thinning than males. In contrast, older mice at 20 and 25 mg/kg displayed a more patchy degeneration pattern, outer retinal undulations, and greater variability in degeneration than the young mice. The most effective model for minimizing damage while maintaining consistency utilizes young female mice injected with 25 mg/kg NaIO3. The observed sex- and age-related differences underscore the importance of considering these variables in research, aligning with the National Institutes of Health's guidance. While the model does not fully replicate the complexity of AMD, these findings enhance its utility as a valuable tool for testing RPE/photoreceptor protective or replacement therapies.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Femenino , Masculino , Ratones , Animales , Retina/patología , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/patología , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Yodatos/toxicidad , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/patología , Modelos Animales de Enfermedad
13.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139223

RESUMEN

Age-related macular degeneration (AMD) is a global health challenge. AMD causes visual impairment and blindness, particularly in older individuals. This multifaceted disease progresses through various stages, from asymptomatic dry to advanced wet AMD, driven by various factors including inflammation and oxidative stress. Current treatments are effective mainly for wet AMD; the therapeutic options for dry AMD are limited. Photobiomodulation (PBM) using low-energy light in the red-to-near-infrared range is a promising treatment for retinal diseases. This study investigated the effects of multi-wavelength PBM (680, 780, and 830 nm) on sodium iodate-induced oxidatively damaged retinal tissue. In an in vivo rat model of AMD induced by sodium iodate, multi-wavelength PBM effectively protected the retinal layers, reduced retinal apoptosis, and prevented rod bipolar cell depletion. Furthermore, PBM inhibited photoreceptor degeneration and reduced retinal pigment epithelium toxicity. These results suggest that multi-wavelength PBM may be a useful therapeutic strategy for AMD, mitigating oxidative stress, preserving retinal integrity, and preventing apoptosis.


Asunto(s)
Terapia por Luz de Baja Intensidad , Degeneración Macular Húmeda , Animales , Ratas , Yodatos/toxicidad , Retina
14.
Antioxidants (Basel) ; 12(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37891899

RESUMEN

Although AMD is a complex disease, oxidative stress is a crucial contributor to its development, especially in view of the higher oxygen demand of the retina. Paraoxonase 2 (PON2) is a ubiquitously and constitutively expressed antioxidant protein that is found intracellularly associated with mitochondrial membranes and modulates mitochondrial ROS production and function. The contribution of PON2 to AMD has not been studied to date. In this study, we examined the role of PON2 in AMD utilizing both in vitro and in vivo models of AMD with emphasis on mitochondrial function. Mitochondrial localization and regulation of PON2 following oxidative stress were determined in human primary cultured retinal pigment epithelium (hRPE) cells. PON2 was knocked down in RPE cells using siRNA and mitochondrial bioenergetics were measured. To investigate the function of PON2 in the retina, WT and PON2-deficient mice were administered NaIO3 (20 mg/kg) intravenously; fundus imaging, optical coherence tomography (OCT), electroretinography (ERG) were conducted; and retinal thickness and cell death were measured and quantified. In hRPE, mitochondrial localization of PON2 increased markedly with stress. Moreover, a time-dependent regulation of PON2 was observed following oxidative stress, with an initial significant increase in expression followed by a significant decrease. Mitochondrial bioenergetic parameters (basal respiration, ATP production, spare respiratory capacity, and maximal respiration) showed a significant decrease with oxidative stress, which was further exacerbated in the absence of PON2. NaIO3 treatment caused significant retinal degeneration, retinal thinning, and reduced rod and cone function in PON2-deficient mice when compared to WT mice. The apoptotic cells and active caspase 3 significantly increased in PON2-deficient mice treated with NaIO3, when compared to WT mice. Our investigation demonstrates that deficiency of PON2 results in RPE mitochondrial dysfunction and a decline in retinal function. These findings imply that PON2 may have a beneficial role in retinal pathophysiology and is worthy of further investigation.

15.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37627589

RESUMEN

Sodium iodate (NaIO3) has been shown to cause severe oxidative stress damage to retinal pigment epithelium cells. This results in the indirect death of photoreceptors, leading to a loss of visual capabilities. The aim of this work is the morphological and functional characterization of the retina and the visual pathway of an animal model of retinal neurodegeneration induced by oxidative stress. Following a single intraperitoneal dose of NaIO3 (65 mg/kg) to C57BL/6J mice with a mutation in the Opn4 gene (Opn4-/-), behavioral and electroretinographic tests were performed up to 42 days after administration, as well as retinal immunohistochemistry at day 57. A near total loss of the pupillary reflex was observed at 3 days, as well as an early deterioration of visual acuity. Behavioral tests showed a late loss of light sensitivity. Full-field electroretinogram recordings displayed a progressive and marked decrease in wave amplitude, disappearing completely at 14 days. A reduction in the amplitude of the visual evoked potentials was observed, but not their total disappearance. Immunohistochemistry showed structural alterations in the outer retinal layers. Our results show that NaIO3 causes severe structural and functional damage to the retina. Therefore, the current model can be presented as a powerful tool for the study of new therapies for the prevention or treatment of retinal pathologies mediated by oxidative stress.

16.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671003

RESUMEN

Adenosine triphosphate (ATP) released from dying cells with high concentrations is sensed as a danger signal by the P2X7 receptor. Sodium iodate (NaIO3) is an oxidative toxic agent, and its retinal toxicity has been used as the model of dry age-related macular degeneration (AMD). In this study, we used NaIO3-treated mice and cultured retinal cells, including BV-2 microglia, 661W photoreceptors, rMC1 Müller cells and ARPE-19 retinal epithelial cells, to understand the pathological action of P2X7 in retinal degeneration. We found that NaIO3 can significantly decrease the photoreceptor function by reducing a-wave and b-wave amplitudes in electroretinogram (ERG) analysis. Optical coherence tomography (OCT) analysis revealed the degeneration of retinal epithelium and ganglion cell layers. Interestingly, P2X7-/- mice were protected from the NaIO3-induced retinopathy and inflammatory NLRP3, IL-1ß and IL-6 gene expression in the retina. Hematoxylin and eosin staining indicated that the retinal epithelium was less deteriorated in P2X7-/- mice compared to the WT group. Although P2X7 was barely detected in 661W, rMC1 and ARPE-19 cells, its gene and protein levels can be increased after NaIO3 treatment, leading to a synergistic cytotoxicity of BzATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethyleneammonium)salt] and NaIO3 administration in ARPE-19 cells. In conclusion, the paracrine action of the ATP/P2X7 axis via cell-cell communication is involved in NaIO3-induced retinal injury. Our results show that P2X7 antagonist might be a potential therapy in inflammation-related retinal degeneration.

17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030739

RESUMEN

Objective To evaluate the effects of intraperitoneal injection of sodium iodate on the physiological indexes and retinal histopathological characteristics of SD rats comprehensively. Methods A total of 64 rats were randomly divided into negative control group and model group, half male and half female. The model group was intraperitoneally injected with 6 mg/mL sodium iodate once at the dose of 10 mL/kg and the negative control group was injected with 10 mL/kg 0.9% NaCl once. The body weight of all surviving rats was detected on the day of injection (0 day) and the 2nd, 6th, 9th, 13th, 16th, 20th, 23rd, 27th, 29th, 36th, 43rd, 50th and 57th days after injection. On the 3rd, 7th, 21st, 28th, 41st and 62nd days after injection, the rats were randomly selected (12 rats in each group on the 28th day, and 4 rats in each group at other time points, those in each group were half male and half female) for serum biochemical indexes detection. The organs were dissected and weighed, and then the main organs and tissues were stained with HE, and the eyes were stained with HE and TUNEL. Blood routine indexes were detected on the 28th and 62nd day after injection. Results After injection of sodium iodate, 88% of the rats in the model group had transient loose stools. During the observation period, the body weight of the rats increased slightly and was more obvious in male rats. On the 28th day after injection, compared with the negative control group, the red blood cell volume (RDW) of female rats and blood urea nitrogen (BUN), reticulocyte count (Retic#) and reticulocyte percentage (Retic%) of male rats in the model group increased significantly (all P<0.05). The white blood cell (WBC), red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) of male and female rats showed decreasing trends, but there were no significant differences between the two groups (all P >0.05). The thymus weight and coefficient of male rats in the model group were smaller than those in the negative control group except for the 7th day after injection, but there were no significant differences between the two groups (all P >0.05). Histopathological examination showed that the retina of the model group gradually developed from wavy changes to abnormal electrocardiogram (ECG)-like changes, with disordered arrangement of each layer, focal thinning of the outer nuclear layer, and apoptosis of the outer nuclear layer of the retina. The incidence of lesions, lesion score and the number of apoptotic cells in the model group were significantly higher than or more than those in the negative control group at the same time, and the difference between the groups on the 28th day was statistically significant (all P<0.01). Conclusion In addition to retinal degeneration in rats, intraperitoneal injection of sodium iodate also had a certain degree of influence on serum biochemical and blood routine indexes, and also showed a slight slow growth of body weight and transient changes in fecal traits. Therefore, when using this model to evaluate drug safety, the effects of modeling reagents on animals should be paid to attention.

18.
Biochem Biophys Res Commun ; 624: 8-15, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932581

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. Oxidative stress-induced retinal pigment epithelium (RPE) cell apoptosis is a crucial pathogenic hallmark in AMD. Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a prostaglandin (PG) D2 receptor, has been implicated in various pathophysiological events, especially inflammation and stress-induced cell apoptosis. However, its specific role in AMD is not fully understood. Here we studied the effect of CRTH2 on AMD. Our results showed that when stimulated by H2O2, CRTH2 mRNA expression in cells tended to increase. Flow cytometry revealed that the CRTH2 inhibitor could protect the RPE from apoptosis. After NaIO3 injection, a larger area of retinal degeneration was observed in wild-type mice than in CRTH2-/- mice. Optical coherence tomography (OCT) and Hematoxylin and Eosin (H&E) staining of retinal sections showed that sodium iodate-induced loss of photoreceptor cells was reduced in CRTH2-/- mice after treatment; TUNEL-positive cells were mostly found in the outer nuclear layer. In the control group, NaIO3 stimulation increased the number of TUNEL-positive cells, whereas the percentage of TUNEL-positive cells was significantly lower in CRTH2-/- mice. Similarly, the CRTH2 receptor inhibitor CAY10471 similarly inhibited sodium iodate-induced retinal damage. Our results suggest that targeting CRTH2 is a promising therapeutic strategy for the treatment of progressive retinal degeneration in AMD.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Degeneración Macular/genética , Ratones , Estrés Oxidativo , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo
19.
J Int Med Res ; 50(8): 3000605221119376, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36036255

RESUMEN

OBJECTIVE: Retinal degeneration (RD) is a group of serious blinding eye diseases characterized by photoreceptor cell apoptosis and progressive degeneration of retinal neurons. However, the underlying mechanism of its pathogenesis remains unclear. METHODS: In this study, retinal tissues from sodium iodate (NaIO3)-induced RD and control rats were collected for transcriptome analysis using RNA-sequencing (RNA-seq). Analysis of white blood cell-related parameters was conducted in patients with retinitis pigmentosa (RP) and age-related cataract (ARC) patients. RESULTS: In total, 334 mRNAs, 77 long non-coding RNAs (lncRNAs), and 20 other RNA types were identified as differentially expressed in the retinas of NaIO3-induced RD rats. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that differentially expressed mRNAs were mainly enriched in signaling pathways related to immune inflammation. Moreover, we found that the neutrophil-to-lymphocyte ratio was significantly higher in RP patients than in ARC patients. CONCLUSION: Overall, this study suggests that multiple chemokines participating in systemic inflammation may contribute to RD pathogenesis.


Asunto(s)
Degeneración Retiniana , Animales , Quimiocinas , Perfilación de la Expresión Génica , Inflamación , Yodatos , ARN Mensajero , Ratas , Análisis de Secuencia de ARN
20.
Doc Ophthalmol ; 145(2): 147-155, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895211

RESUMEN

PURPOSE: We studied the conditions under which c-waves of the electroretinogram (ERG), that represent retinal pigment epithelium (RPE) function, were detectable using an alternating current (AC) amplifier and whether the c-wave recorded using an AC amplifier was useful for evaluating RPE function. METHODS: We recorded ERG responses in rats to 5 s stimuli under the conditions in which the low-cut frequency and the stimulus luminance were varied. In addition, changes in ERGs were studied after intravenous injection of sodium iodate (SI) to induce RPE degeneration. RESULTS: The c-wave was detected clearly when the frequency of the low-cut filter was set at 0.01 Hz and light stimulus luminances were ≥ - 1.0 log cd/m2. The c-wave was attenuated earlier than other waves (e.g., a-wave and b-wave) after SI administration. CONCLUSIONS: The c-wave was easily detectable using an AC amplifier with the low-cut filter set at 0.01 Hz. Using the AC amplifier may allow easier c-wave recording, compared with the conventional use of a direct current (DC) amplifier, and could be useful for evaluating RPE function.


Asunto(s)
Electrorretinografía , Retina , Animales , Células Epiteliales , Yodatos , Ratas , Pigmentos Retinianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA