Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Infect Dis Model ; 8(3): 656-671, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37346475

RESUMEN

The emergence of a novel strain during a pandemic, like the current COVID-19, is a major concern to the healthcare system. The most effective strategy to control this type of pandemic is vaccination. Many previous studies suggest that the existing vaccine may not be fully effective against the new strain. Additionally, the new strain's late arrival has a significant impact on the disease dynamics and vaccine coverage. Focusing on these issues, this study presents a two-strain epidemic model in which the new strain appears with a time delay. We considered two vaccination provisions, namely preinfection and postinfection vaccinations, which are governed by human behavioral dynamics. In such a framework, individuals have the option to commit vaccination before being infected with the first strain. Additionally, people who forgo vaccination and become infected with the first train have the chance to be vaccinated (after recovery) in an attempt to avoid infection from the second strain. However, a second strain can infect vaccinated and unvaccinated individuals. People may have additional opportunities to be vaccinated and to protect themselves from the second strain due to the time delay. Considering the cost of the vaccine, the severity of the new strain, and the vaccine's effectiveness, our results indicated that delaying the second strain decreases the peak size of the infected individuals. Finally, by estimating the social efficiency deficit, we discovered that the social dilemma for receiving immunization decreases with the delay in the arrival of the second strain.

2.
Heliyon ; 9(3): e14355, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950619

RESUMEN

On evolutionary game theory (EGT), two intervention policies: vaccination and self-awareness, are considered to account for how human attitude impacts disease spreading. Although these interventions can impose, their implementation may depend on the various immunity systems such as shield immunity, innate immunity, waning immunity, natural immunity, and artificial immunity. This framework provides an epidemic SEIRVA (susceptible-exposed-infected-removed-vaccinated-aware) model and two EGT dynamics to analyze the interplay between the immunity system and social learning interventions. The prospect of exploring the individual's strategy and social dilemma for removing a disease could assist design an effective vaccine program and self-awareness policy. Also, we evaluated the indicator of social efficiency deficit (SED) for a social dual-dilemma to measure the presence of a dilemma situation. Extensive theoretical analysis displays that stability includes the reproduction number, conditions for positivity and uniqueness, and the strength number analyzed in the equilibria, including fundamental properties validated by numerical simulation of the discretization method that appraises a variety of graphs at adjusting parameters. We present extensive numerical studies investigating the affect of controlling parameters, individual vulnerability, optimal policies, and individual costs. It turns out that, even with the affordable vaccine, individuals may have very different behaviors; self-awareness strategy plays a vital role in controlling diseases.

3.
Appl Math Comput ; 432: 127365, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35812766

RESUMEN

During a pandemic event like the present COVID-19, self-quarantine, mask-wearing, hygiene maintenance, isolation, forced quarantine, and social distancing are the most effective nonpharmaceutical measures to control the epidemic when the vaccination and proper treatments are absent. In this study, we proposed an epidemiological model based on the SEIR dynamics along with the two interventions defined as self-quarantine and forced quarantine by human behavior dynamics. We consider a disease spreading through a population where some people can choose the self-quarantine option of paying some costs and be safer than the remaining ones. The remaining ones act normally and send to forced quarantine by the government if they get infected and symptomatic. The government pays the forced quarantine costs for individuals, and the government has a budget limit to treat the infected ones. Each intervention derived from the so-called behavior model has a dynamical equation that accounts for a proper balance between the costs for each case, the total budget, and the risk of infection. We show that the infection peak cannot be reduced if the authority does not enforce a proactive (quantified by a higher sensitivity parameter) intervention. While comparing the impact of both self- and forced quarantine provisions, our results demonstrate that the latter is more influential to reduce the disease prevalence and the social efficiency deficit (a gap between social optimum payoff and equilibrium payoff).

4.
Chaos Solitons Fractals ; 158: 112030, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35381979

RESUMEN

In the wake of COVID-19, mask-wearing practice and self-quarantine is thought to be the most effective means of controlling disease spread. The current study develops an epidemiological model based on the SEIR process that takes into account dynamic human behavior toward those two preventive measures. In terms of quantifying the effect of wearing a mask, our model distinguishes itself by accounting for the effect of self-protection as well as the effect of reducing a potential risk to other individuals in different formulations. Each of the two measures derived from the so-called behavior model has a dynamical equation that takes into account the delicate balance between the cost of wearing a mask/self-quarantine and the risk of infection. The dynamical system as a whole contains a social dilemma structure because of whether to commit to preventing measures or seek the possibility of infection-free without paying anything. The numerical result was delivered along the social efficiency deficit, quantifying the extent to which Nash equilibrium has been improved to a social optimal state. PACS numbers Theory and modeling; computer simulation, 87.15.Aa; Dynamics of evolution, 87.23.Kg.

5.
Proc Math Phys Eng Sci ; 475(2232): 20190484, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31892836

RESUMEN

The dynamics of a spreadable disease are largely governed by four factors: proactive vaccination, retroactive treatment, individual decisions, and the prescribing behaviour of physicians. Under the imposed vaccination policy and antiviral treatment in society, complex factors (costs and expected effects of the vaccines and treatments, and fear of being infected) trigger an emulous situation in which individuals avoid infection by the pre-emptive or ex post provision. Aside from the established voluntary vaccination game, we propose a treatment game model associated with the resistance evolution of antiviral/antibiotic overuse. Moreover, the imperfectness of vaccinations has inevitably led to anti-vaccine behaviour, necessitating a proactive treatment policy. However, under the excessively heavy implementation of treatments such as antiviral medicine, resistant strains emerge. The model explicitly exhibits a dual social dilemma situation, in which the treatment behaviour changes on a local time scale, and the vaccination uptake later evolves on a global time scale. The impact of resistance evolution and the coexistence of dual dilemmas are investigated by the control reproduction number and the social efficiency deficit, respectively. Our investigation might elucidate the substantial impacts of both vaccination and treatment in the framework of epidemic dynamics, and hence suggest the appropriate use of antiviral treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA