Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes Brain Behav ; 23(5): e12907, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39246030

RESUMEN

Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood-parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown-headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red-winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT-treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin-releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT-treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood-parasitic behavior.


Asunto(s)
Comportamiento de Nidificación , Oxitocina , Animales , Oxitocina/metabolismo , Oxitocina/genética , Oxitocina/farmacología , Oxitocina/análogos & derivados , Femenino , Pájaros Cantores/genética , Encéfalo/metabolismo , Especificidad de la Especie , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleos Septales/metabolismo , Área Preóptica/metabolismo
2.
J Neural Eng ; 21(3)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38861996

RESUMEN

Objective.Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors.Approach:We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system and a discrete-state hidden semi-Markov model. We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively.Main results:Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.Significance:Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.


Asunto(s)
Fotometría , Conducta Social , Animales , Ratones , Fotometría/métodos , Masculino , Femenino , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Simulación por Computador , Conducta Sexual Animal/fisiología , Agresión/fisiología , Modelos Neurológicos
3.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38234793

RESUMEN

Distributed hypothalamic-midbrain neural circuits orchestrate complex behavioral responses during social interactions. How population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include continuous-state linear dynamical system (LDS) and discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states. Overall, these analysis approaches provide an unbiased strategy to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.

4.
bioRxiv ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37905098

RESUMEN

Aggression is ubiquitous among social species and functions to maintains social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying aggression due to their unique and flexible dominance hierarchy. However, female aggression in this species and the neural mechanisms of aggression in both sexes is not well understood. To further understand the potential sex differences in aggression in this species, we characterized aggression in male and female A. burtoni in a mirror assay. We then quantified neural activation patterns in brain regions of the social behavior network (SBN) to investigate if differences in behavior are reflected in the brain with immunohistochemistry by detecting the phosphorylated ribosome marker phospho-S6 ribosomal protein (pS6), a marker for neural activation. We found that A. burtoni perform both identical and sex-specific aggressive behaviors in response to a mirror assay. We observed sex differences in pS6 immunoreactivity in the Vv, a homolog of the lateral septum in mammals. Males but not females had higher ps6 immunoreactivity in the ATn after the aggression assay. The ATn is a homolog of the ventromedial hypothalamus in mammals, which is strongly implicated in the regulation of aggression in males. Several regions also have higher pS6 immunoreactivity in negative controls than fish exposed to a mirror, implicating a role for inhibitory neurons in suppressing aggression until a relevant stimulus is present. Male and female A. burtoni display both similar and sexually dimorphic behavioral patterns in aggression in response to a mirror assay. There are also sex differences in the corresponding neural activation patterns in the SBN. In mirror males but not females, the ATn clusters with the POA, revealing a functional connectivity of these regions that is triggered in an aggressive context in males. These findings suggest that distinct neural circuitry underlie aggressive behavior in male and female A. burtoni, serving as a foundation for future work investigating the molecular and neural underpinnings of sexually dimorphic behaviors in this species to reveal fundamental insights into understanding aggression.

5.
Neuroscience ; 537: 126-140, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38042251

RESUMEN

17ß-estradiol (E2) regulates various forms of social behavior through the activation of two types of estrogen receptors, ERα and ERß. The lateral septum (LS) is thought to be one of the potential target sites of E2, but the role played by ERα and ERß in this brain area remains largely unknown. In the present study, we first analyzed the distribution of ERα and ERß with double fluorescent immunohistochemistry in a transgenic mouse line in which red fluorescent protein (RFP) signal has been a reliable marker of ERß expression. The overall number of ERß-RFP-expressing cells was significantly higher (about 2.5 times) compared to ERα-expressing cells. The distribution of the two types of ERs was different, with co-expression only seen in about 1.2% of total ER-positive cells. Given these distinctive distribution patterns, we examined the behavioral effects of site-specific knockdown of each ER using viral vector-mediated small interference RNA (siRNA) techniques in male mice. We found ERß-specific behavioral alterations during a social interaction test, suggesting involvement of ERß-expressing LS neurons in the regulation of social anxiety and social interest. Further, we investigated the neuronal projections of ERα- and ERß-expressing LS cells by injecting an anterograde viral tracer in ERα-Cre and ERß-iCre mice. Dense expression of green fluorescence protein (GFP) in synaptic terminals was observed in ERß-iCre mice in areas known to be related to the modulation of anxiety. These findings collectively suggest that ERß expressed in the LS plays a major role in the estrogenic control of social anxiety-like behavior.


Asunto(s)
Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Ratones , Masculino , Animales , Receptor beta de Estrógeno/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Estradiol/farmacología , Estradiol/metabolismo , Ratones Transgénicos , Ansiedad
6.
Curr Biol ; 33(22): 4937-4949.e3, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37898122

RESUMEN

Bluehead wrasses (Thalassoma bifasciatum) follow a socially controlled mechanism of sex determination. A socially dominant initial-phase (IP) female is able to transform into a new terminal-phase (TP) male if the resident TP male is no longer present. TP males display an elaborate array of courtship behaviors, including both color changes and motor behaviors. Little is known concerning the neural circuits that control male-typical courtship behaviors. This study used glutamate iontophoresis to identify regions that may be involved in courtship. Stimulation of the following brain regions elicited diverse types of color change responses, many of which appear similar to courtship color changes: the ventral telencephalon (supracommissural nucleus of the ventral telencephalon [Vs], lateral nucleus of the ventral telencephalon [Vl], ventral nucleus of the ventral telencephalon [Vv], and dorsal nucleus of the ventral telencephalon [Vd]), parts of the preoptic area (NPOmg and NPOpc), entopeduncular nucleus, habenular nucleus, and pretectal nuclei (PSi and PSm). Stimulation of two regions in the posterior thalamus (central posterior thalamic [CP] and dorsal posterior thalamic [DP]) caused movements of the pectoral fins that are similar to courtship fluttering and vibrations. Furthermore, these responses were elicited in female IP fish, indicating that circuits for sexual behaviors typical of TP males exist in females. Immunohistochemistry results revealed regions that are more active in fish that are not courting: interpeduncular nucleus, red nucleus, and ventrolateral thalamus (VL). Taken together, we propose that the telencephalic-habenular-interpeduncular pathway plays an important role in controlling and regulating courtship behaviors in TP males; in this model, in response to telencephalic input, the habenular nucleus inhibits the interpeduncular nucleus, thereby dis-inhibiting forebrain regions and promoting the expression of courtship behaviors.


Asunto(s)
Cortejo , Perciformes , Animales , Femenino , Masculino , Telencéfalo/fisiología , Prosencéfalo , Tálamo , Perciformes/fisiología , Peces
7.
Horm Behav ; 155: 105403, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37678093

RESUMEN

Social relationships, affiliative social attachments, are important for many species. The best studied types of relationships are monogamous pair bonds. However, it remains unclear how generalizable models of pair bonding are across types of social attachments. Zebra finches are a fascinating system to explore the neurobiology of social relationships because they form various adult bonds with both same- and opposite-sex partners. To test whether different bonds are supported by a single brain network, we quantified individuals' neuroendocrine state after either 24 h or 2 weeks of co-housing with a novel same- or opposite-sex partner. We defined neuroendocrine state by the expression of 22 genes related to 4 major signaling pathways (dopamine, steroid, nonapeptide, and opioid) in six brain regions associated with affiliation or communication [nucleus accumbens (NAc), nucleus taeniae of the amygdala (TnA), medial preoptic area (POM), and periaqueductal gray (PAG), ventral tegmental area, and auditory cortex]. Overall, we found dissociable effects of social contexts (same- or opposite-sex partnerships) and duration of co-housing. Social bonding impacted the neuroendocrine state of four regions in males (NAc, TnA, POM, and PAG) and three regions in females (NAc, TnA, and POM). Monogamous pair bonding specifically appeared to impact male NAc. However, the patterns of gene expression in zebra finches were different than has previously been reported in mammals. Together, our results support the view that there are numerous mechanisms regulating social relationships and highlight the need to further our understanding of how social interactions shape social bonds.

8.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37572660

RESUMEN

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Asunto(s)
Vías Nerviosas , Conducta Sexual Animal , Animales , Masculino , Neuronas/fisiología , Recompensa , Conducta Sexual Animal/fisiología , Ratones
9.
Brain Struct Funct ; 228(7): 1785-1797, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37615758

RESUMEN

Neural activation in brain regions for vocal control is social context dependent. This context-dependent brain activation reflects social context-appropriate vocal behavior but has unresolved mechanisms. Studies of non-vocal social behaviors in multiple organisms suggest a functional role for several evolutionarily conserved and highly interconnected brain regions. Here, we use neural activity-dependent gene expression to evaluate the functional connectivity of this social behavior network within zebra finches in non-social and social singing contexts. We found that activity in one social behavior network region, the medial preoptic area (POM), was strongly associated with the amount of non-social undirected singing in zebra finches. In addition, in all regions of the social behavior network and the paraventricular nucleus (PVN), a higher percentage of EGR1 expression was observed during a social female-directed singing context compared to a non-social undirected singing context. Furthermore, we observed distinct patterns of significantly correlated activity between regions of the social behavior network during non-social undirected and social female-directed singing. Our results suggest that non-social vs. social contexts differentially activate this social behavior network and PVN. Moreover, neuronal activity within this social behavior network, PVN, and POM may alter context-appropriate vocal production.


Asunto(s)
Encéfalo , Conducta Social , Femenino , Animales , Aprendizaje , Núcleo Hipotalámico Paraventricular , Área Preóptica
10.
Horm Behav ; 152: 105362, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086574

RESUMEN

The social behavior network (SBN) has provided a framework for understanding the neural control of social behavior. The original SBN hypothesis proposed this network modulates social behavior and should exhibit distinct patterns of neural activity across nodes, which correspond to distinct social contexts. Despite its tremendous impact on the field of social neuroscience, no study has directly tested this hypothesis. Thus, we assessed Fos responses across the SBN of male prairie voles (Microtus ochrogaster). Virgin/non-bonded and pair bonded subjects were exposed to a sibling cagemate or pair bonded partner, novel female, novel male, novel meadow vole, novel object, or no stimulus. Inconsistent with the original SBN hypothesis, we did not find profoundly different patterns of neural responses across the SBN for different contexts, but instead found that the SBN generated significantly different patterns of activity in response to social novelty in pair bonded, but not non-bonded males. These findings suggest that non-bonded male prairie voles may perceive social novelty differently from pair bonded males or that SBN functionality undergoes substantial changes after pair bonding. This study reveals novel information about bond-dependent, context-specific neural responsivity in male prairie voles and suggests that the SBN may be particularly important for processing social salience. Further, our study suggests there is a need to reconceptualize the framework of how the SBN modulates social behavior.


Asunto(s)
Pradera , Conducta Social , Masculino , Femenino , Humanos , Animales , Arvicolinae/fisiología , Apareamiento
11.
Annu Rev Neurosci ; 46: 321-339, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001242

RESUMEN

Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.


Asunto(s)
Agresión , Conducta Social , Masculino , Animales , Femenino , Encéfalo , Conducta Sexual Animal , Cognición , Mamíferos
12.
eNeuro ; 9(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35788106

RESUMEN

Neuroestrogens are synthesized within the brain and regulate social behavior, learning and memory, and cognition. In song sparrows, Melospiza melodia, 17ß-estradiol (17ß-E2) promotes aggressive behavior, including during the nonbreeding season when circulating steroid levels are low. Estrogens are challenging to measure because they are present at very low levels, and current techniques often lack the sensitivity required. Furthermore, current methods often focus on 17ß-E2 and disregard other estrogens. Here, we developed and validated a method to measure four estrogens [estrone (E1), 17ß-E2, 17α-estradiol (17α-E2), estriol (E3)] simultaneously in microdissected songbird brain, with high specificity, sensitivity, accuracy, and precision. We used liquid chromatography tandem mass spectrometry (LC-MS/MS), and to improve sensitivity, we derivatized estrogens using 1,2-dimethylimidazole-5-sulfonyl-chloride (DMIS). The straightforward protocol improved sensitivity by 10-fold for some analytes. There is substantial regional variation in neuroestrogen levels in brain areas that regulate social behavior in male song sparrows. For example, the auditory area NCM, which has high aromatase levels, has the highest E1 and 17ß-E2 levels. In contrast, estrogen levels in blood are very low. Estrogen levels in both brain and circulation are lower in the nonbreeding season than in the breeding season. This technique will be useful for estrogen measurement in songbirds and potentially other animal models.


Asunto(s)
Estrógenos , Pájaros Cantores , Animales , Encéfalo , Cromatografía Liquida , Estradiol , Masculino , Espectrometría de Masas en Tándem
13.
Horm Behav ; 141: 105138, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35219166

RESUMEN

A primary goal of the field of behavioral neuroendocrinology is to understand how the brain modulates complex behavior. Over the last 20 years we have proposed various brain networks to explain behavioral regulation, however, the parameters by which these networks are identified are often ill-defined and reflect our personal scientific biases based on our area of expertise. In this perspective article, I question our characterization of brain networks underlying behavior and their utility. Using the Social Behavior Network as a primary example, I outline issues with brain networks commonly discussed in the field of behavioral neuroendocrinology, argue that we reconsider how we identify brain networks underlying behavior, and urge the future use of analytical tools developed by the field of Network Neuroscience. With modern statistical/mathematical tools and state of the art technology for brain imaging, we can strive to minimize our bias and generate brain networks that may more accurately reflect how the brain produces behavior.


Asunto(s)
Encéfalo , Neurociencias , Encéfalo/fisiología , Motivación , Neuroendocrinología , Conducta Social
14.
J Exp Zool A Ecol Integr Physiol ; 337(1): 88-98, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929097

RESUMEN

Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.


Asunto(s)
Lagartos , Animales , Evolución Biológica , Encéfalo , Femenino , Masculino , Partenogénesis , Conducta Sexual Animal
15.
J Exp Zool A Ecol Integr Physiol ; 337(1): 35-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34516724

RESUMEN

Revealing the mechanisms underlying experience-dependent plasticity is a hallmark of behavioral neuroscience. While the study of social behavior has focused primarily on the neuroendocrine and neural control of social behaviors, the plasticity of these innate behaviors has received relatively less attention. Here, we review studies on mating-dependent changes to social behavior and neural circuitry across mammals, birds, and reptiles. We provide an overview of species similarities and differences in the effects of mating experiences on motivational and performative aspects of sexual behaviors, on sensory processing and preferences, and on the experience-dependent consolidation of sexual behavior. We also discuss recent insights into the neural mechanisms of and developmental influences on mating-dependent changes and outline promising approaches to investigate evolutionary parallels and divergences in experience-dependent plasticity.


Asunto(s)
Evolución Biológica , Conducta Social , Animales , Aves , Mamíferos , Reptiles
16.
Genes Brain Behav ; 21(3): e12781, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905293

RESUMEN

Organisms filter the complexity of natural stimuli through their individual sensory and perceptual systems. Such perceptual filtering is particularly important for social stimuli. A shared "social umwelt" allows individuals to respond appropriately to the expected diversity of cues and signals during social interactions. In this way, the behavioral and neurobiological mechanisms of sociality and social bonding cannot be disentangled from perceptual mechanisms and sensory processing. While a degree of embeddedness between social and sensory processes is clear, our dominant theoretical frameworks favor treating the social and sensory processes as distinct. An integrated social-sensory framework has the potential to greatly expand our understanding of the mechanisms underlying individual variation in social bonding and sociality more broadly. Here we leverage what is known about sensory processing and pair bonding in two common study systems with significant species differences in their umwelt (rodent chemosensation and avian acoustic communication). We primarily highlight that (1) communication is essential for pair bond formation and maintenance, (2) the neural circuits underlying perception, communication and social bonding are integrated, and (3) candidate neuromodulatory mechanisms that regulate pair bonding also impact communication and perception. Finally, we propose approaches and frameworks that more fully integrate sensory processing, communication, and social bonding across levels of analysis: behavioral, neurobiological, and genomic. This perspective raises two key questions: (1) how is social bonding shaped by differences in sensory processing?, and (2) to what extent is sensory processing and the saliency of signals shaped by social interactions and emerging relationships?


Asunto(s)
Apareamiento , Conducta Social , Animales , Proteínas de Unión al ADN , Percepción , Sensación
17.
Genes Brain Behav ; 20(7): e12753, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34036739

RESUMEN

Species with multimodal communication integrate information from social cues in different modalities into behavioral responses that are mediated by changes in gene expression in the brain. Differences in patterns of gene expression between signal modalities may shed light on the neuromolecular mechanisms underlying multisensory processing. Here, we use RNA-Seq to analyze brain transcriptome responses to either chemical or visual social signals in a territorial lizard with multimodal communication. Using an intruder challenge paradigm, we exposed 18 wild-caught, adult, male Sceloporus jarrovii to either male conspecific scents (femoral gland secretions placed on a small pebble), the species-specific push-up display (a programmed robotic model), or a control (an unscented pebble). We conducted differential expression analysis with both a de novo S. jarrovii transcriptome assembly and the reference genome of a closely related species, Sceloporus undulatus. Despite some inter-individual variation, we found significant differences in gene expression in the brain across signal modalities and the control in both analyses. The most notable differences occurred between chemical and visual stimulus treatments, closely followed by visual stimulus versus the control. Altered expression profiles could explain documented aggression differences in the immediate behavioral response to conspecific signals from different sensory modalities. Shared differentially expressed genes between visually- or chemically-stimulated males are involved in neural activity and neurodevelopment and several other differentially expressed genes in stimulus-challenged males are involved in conserved signal-transduction pathways associated with the social stress response, aggression and the response to territory intruders across vertebrates.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Expresión Génica/fisiología , Transcriptoma/fisiología , Achillea/metabolismo , Animales , Lagartos/metabolismo , Masculino , Estimulación Luminosa/métodos
18.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658309

RESUMEN

Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unexplored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social experience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback of social vocalizations. Male mice were separated into either social housing of three mice per cage or into isolated housing at 18-24 d postnatal. After 28-30 d in housing treatment, mice were parsed into one of three drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally increased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced functional connectivity, clustering, and modularity compared with socially reared mice. These results are analogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that early-life social isolation modulates serotonergic regulation of social networks.


Asunto(s)
Serotonina , Conducta Social , Animales , Femenino , Masculino , Ratones , Neuronas , Aislamiento Social
19.
Front Behav Neurosci ; 15: 818782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35221943

RESUMEN

Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.

20.
Front Endocrinol (Lausanne) ; 11: 595895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193108

RESUMEN

Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant in mammals. This is due to both production of local estrogens and signaling by these ligands, particularly in an interconnected set of nuclei called the social behavioural network (SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is thought to underlie the display of social behaviour in mammals. Signalling by the predominant endogenous estrogen, 17ß-estradiol, can be either via the classical genomic or non-classical rapid pathway. In the classical genomic pathway, 17ß-estradiol binds the intracellular estrogen receptors (ER) α and ß which act as ligand-dependent transcription factors to regulate transcription. In the non-genomic pathway, 17ß-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to rapidly signal via kinases or calcium flux. Though GPER1's role in sexual dimorphism has been explored to a greater extent in cardiovascular physiology, less is known about its role in the brain. In the last decade, activation of GPER1 has been shown to be important for lordosis and social cognition in females. In this review we will focus on several mechanisms that may contribute to sexually dimorphic behaviors including the colocalization of these estrogen receptors in the SBN, interplay between the signaling pathways activated by these different estrogen receptors, and the role of these receptors in development and the maintenance of the SBN, all of which remain underexplored.


Asunto(s)
Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuales , Femenino , Humanos , Masculino , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA