Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Med Syst ; 48(1): 90, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298041

RESUMEN

IT has made significant progress in various fields over the past few years, with many industries transitioning from paper-based to electronic media. However, sharing electronic medical records remains a long-term challenge, particularly when patients are in emergency situations, making it difficult to access and control their medical information. Previous studies have proposed permissioned blockchains with limited participants or mechanisms that allow emergency medical information sharing to pre-designated participants. However, permissioned blockchains require prior participation by medical institutions, and limiting sharing entities restricts the number of potential partners. This means that sharing medical information with local emergency doctors becomes impossible if a patient is unconscious and far away from home, such as when traveling abroad. To tackle this challenge, we propose an emergency access control system for a global electronic medical information system that can be shared using a public blockchain, allowing anyone to participate. Our proposed system assumes that the patient wears a pendant with tamper-proof and biometric authentication capabilities. In the event of unconsciousness, emergency doctors can perform biometrics on behalf of the patient, allowing the family doctor to share health records with the emergency doctor through a secure channel that uses the Diffie-Hellman (DH) key exchange protocol. The pendant's biometric authentication function prevents unauthorized use if it is stolen, and we have tested the blockchain's fee for using the public blockchain, demonstrating that the proposed system is practical.


Asunto(s)
Cadena de Bloques , Seguridad Computacional , Registros Electrónicos de Salud , Humanos , Registros Electrónicos de Salud/organización & administración , Confidencialidad , Intercambio de Información en Salud
2.
Heliyon ; 10(16): e34407, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253236

RESUMEN

In the realm of modern healthcare, Electronic Health Records EHR serve as invaluable assets, yet they also pose significant security challenges. The absence of EHR access auditing mechanisms, which includes the EHR audit trails, results in accountability gaps and magnifies security vulnerabilities. This situation effectively paves the way for unauthorized data alterations to occur without detection or consequences. Inadequate EHR compliance auditing procedures, particularly in verifying and validating access control policies, expose healthcare organizations to risks such as data breaches, and unauthorized data usage. These vulnerabilities result from unchecked unauthorized access activities. Additionally, the absence of EHR audit logs complicates investigations, weakens proactive security measures, and raises concerns to put healthcare institutions at risk. This study addresses the pressing need for robust EHR auditing systems designed to scrutinize access to EHR data, encompassing who accesses it, when, and for what purpose. Our research delves into the complex field of EHR auditing, which includes establishing an immutable audit trail to enhance data security through blockchain technology. We also integrate Purpose-Based Access Control (PBAC) alongside smart contracts to strengthen compliance auditing by validating access legitimacy and reducing unauthorized entries. Our contributions encompass the creation of audit trail of EHR access, compliance auditing via PBAC policy verification, the generation of audit logs, and the derivation of data-driven insights, fortifying EHR access security.

3.
Sci Rep ; 14(1): 16069, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992054

RESUMEN

This work proposes a Blockchain-enabled Organ Matching System (BOMS) designed to manage the process of matching, storing, and sharing information. Biological factors are incorporated into matching and the cross-matching process is implemented into the smart contracts. Privacy is guaranteed by using patient-associated blockchain addresses, without transmitting or using patient personal records in the matching process. The matching algorithm implemented as a smart contract is verifiable by any party. Clinical records, process updates, and matching results are also stored on the blockchain, providing tamper-resistance of recipient's records and the recipients' waiting queue. The system also is capable of handling cases in which there is a donor without an immediate compatible recipient. The system is implemented on the Ethereum blockchain and several scenarios were tested. The performance of the proposed system is compared to other existing organ donation systems, and ours outperformed any existing organ matching system built on blockchain. BOMS is tested to ascertain its compatibility with public, private, and consortium blockchain networks, checks for security vulnerabilities and cross-matching efficiency. The implementation codes are available online.


Asunto(s)
Algoritmos , Cadena de Bloques , Obtención de Tejidos y Órganos , Humanos , Obtención de Tejidos y Órganos/métodos , Donantes de Tejidos , Seguridad Computacional
4.
Heliyon ; 10(11): e30972, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832272

RESUMEN

The rise in the cost of essentials affects every nation around the world, but it has become a major concern for developing nations. It is getting increasingly difficult to keep up with rising prices for everyday items in these countries, where the majority of the population is from the middle class or lower middle class. Inflation, pandemics, wars, and other important variables all contribute to price increases. There may be another significant factor at play, which is supply-chain corruption. The supply chain's unreliable, chaotic, and opaque nature is to blame for this corruption. We are concentrating on the agri-food supply chain in our study. Because many of the current agri-food supply chains are intricate and challenging to monitor, dishonest parties can exploit the situation. Therefore, we suggested a thorough blockchain-based agri-food supply chain to identify the source of price increases. The private Ethereum blockchain was used in the suggested system. Since the private Ethereum blockchain is more efficient, safe, and fast, it was chosen. Smart contracts were created to describe the system and its underlying rules and laws. Furthermore, in order to showcase the usefulness of our smart contracts, we exhibited a sample decentralized application to support our hypothesis. We also gave the system a complete security and vulnerability assessment to make sure it is operating properly and is protected from threats and attacks. Due to the use of blockchain, the system is immutable, transparent, and simple to track and monitor. The proposed system has demonstrated greater transparency, traceability, reliability, speed, security, and cost-efficiency compared to conventional systems. It effectively traces the origin of corruption in the supply chain, providing a more straightforward means to tackle concerns related to price hikes.

5.
Ir J Med Sci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831242

RESUMEN

BACKGROUND: Blockchain technology provides a secure and decentralized platform for storing and transferring sensitive medical data, which can be utilized to enable remote medical consultations. AIM: A theoretical framework for creating a blockchain-based digital system created to facilitate telemedicine system. RESULTS: This paper proposes a theoretical framework based on Hyperledger fabric for creating a blockchain-based digital entity to facilitate telemedicine services. The proposed framework utilizes blockchain technology to provide a secure and reliable platform for medical practitioners to interact remotely with patient transactions. CONCLUSION: The blockchain will serve as a one-stop digital service to secure patient data, ensure privacy, and facilitate payments. The proposed framework leverages the existing Hyperledger fabric platform to build a secure blockchain-assisted telemedicine platform.

6.
Heliyon ; 10(5): e27176, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38562497

RESUMEN

Federated learning enables the collaborative training of machine learning models across multiple organizations, eliminating the need for sharing sensitive data. Nevertheless, in practice, the data distributions among these organizations are often non-independent and identically distributed (non-IID), which poses significant challenges for traditional federated learning. To tackle this challenge, we present a hierarchical federated learning framework based on blockchain technology, which is designed to enhance the training of non-IID data., protect data privacy and security, and improve federated learning performance. The framework builds a global shared pool by constructing a blockchain system to reduce the non-IID degree of local data and improve model accuracy. In addition, we use smart contracts to distribute and collect models and design a main blockchain to store local models for federated aggregation, achieving decentralized federated learning. We train the MLP model on the MNIST dataset and the CNN model on the Fashion-MNIST and CIFAR-10 datasets to verify its feasibility and effectiveness. The experimental results show that the proposed strategy significantly improves the accuracy of decentralized federated learning on three tasks with non-IID data.

7.
Sci Rep ; 14(1): 7841, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570648

RESUMEN

Recent research has focused on applying blockchain technology to solve security-related problems in Internet of Things (IoT) networks. However, the inherent scalability issues of blockchain technology become apparent in the presence of a vast number of IoT devices and the substantial data generated by these networks. Therefore, in this paper, we use a lightweight consensus algorithm to cater to these problems. We propose a scalable blockchain-based framework for managing IoT data, catering to a large number of devices. This framework utilizes the Delegated Proof of Stake (DPoS) consensus algorithm to ensure enhanced performance and efficiency in resource-constrained IoT networks. DPoS being a lightweight consensus algorithm leverages a selected number of elected delegates to validate and confirm transactions, thus mitigating the performance and efficiency degradation in the blockchain-based IoT networks. In this paper, we implemented an Interplanetary File System (IPFS) for distributed storage, and Docker to evaluate the network performance in terms of throughput, latency, and resource utilization. We divided our analysis into four parts: Latency, throughput, resource utilization, and file upload time and speed in distributed storage evaluation. Our empirical findings demonstrate that our framework exhibits low latency, measuring less than 0.976 ms. The proposed technique outperforms Proof of Stake (PoS), representing a state-of-the-art consensus technique. We also demonstrate that the proposed approach is useful in IoT applications where low latency or resource efficiency is required.

8.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38610478

RESUMEN

With the rapid growth of the Internet of Things (IoT), massive terminal devices are connected to the network, generating a large amount of IoT data. The reliable sharing of IoT data is crucial for fields such as smart home and healthcare, as it promotes the intelligence of the IoT and provides faster problem solutions. Traditional data sharing schemes usually rely on a trusted centralized server to achieve each attempted access from users to data, which faces serious challenges of a single point of failure, low reliability, and an opaque access process in current IoT environments. To address these disadvantages, we propose a secure and dynamic access control scheme for the IoT, named SDACS, which enables data owners to achieve decentralized and fine-grained access control in an auditable and reliable way. For access control, attribute-based control (ABAC), Hyperledger Fabric, and interplanetary file system (IPFS) were used, with four kinds of access control contracts deployed on blockchain to coordinate and implement access policies. Additionally, a lightweight, certificateless authentication protocol was proposed to minimize the disclosure of identity information and ensure the double-layer protection of data through secure off-chain identity authentication and message transmission. The experimental and theoretical analysis demonstrated that our scheme can maintain high throughput while achieving high security and stability in IoT data security sharing scenarios.

9.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38610489

RESUMEN

In the mobile edge computing (MEC) environment, the edge caching can provide the timely data response service for the intelligent scenarios. However, due to the limited storage capacity of edge nodes and the malicious node behavior, the question of how to select the cached contents and realize the decentralized security data caching faces challenges. In this paper, a blockchain-based decentralized and proactive caching strategy is proposed in an MEC environment to address this problem. The novelty is that the blockchain was adopted in an MEC environment with a proactive caching strategy based on node utility, and the corresponding optimization problem was built. The blockchain was adopted to build a secure and reliable service environment. The employed methodology is that the optimal caching strategy was achieved based on the linear relaxation technology and the interior point method. Additionally, in a content caching system, there is a trade-off between cache space and node utility, and the caching strategy was proposed to solve this problem. There was also a trade-off between the consensus process delay of blockchain and the caching latency of content. An offline consensus authentication method was adopted to reduce the influence of the consensus process delay on the content caching. The key finding was that the proposed algorithm can reduce latency and can ensure the security data caching in an IoT environment. Finally, the simulation experiment showed that the proposed algorithm can achieve up to 49.32%, 43.11%, and 34.85% improvements on the cache hit rate, the average content response latency, and the average system utility, respectively, compared to the random content caching algorithm, and it achieved up to 9.67%, 8.11%, and 5.95% increases, successively, compared to the greedy content caching algorithm.

10.
Sensors (Basel) ; 23(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067952

RESUMEN

Due to frequent traffic accidents around the world, people often take out car insurance to mitigate their losses and receive compensation in a traffic accident. However, in the existing car insurance claims process, there are problems such as insurance fraud, inability to effectively track and transmit insurance data, cumbersome insurance procedures, and high insurance data storage costs. Since the immutability and traceability features of blockchain technology can prevent data manipulation and trace past data, we have used the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign and encrypt car insurance data, ensuring both data integrity and security. We propose a blockchain and IPFS-based anticounterfeiting and traceable car insurance claims system to improve the above problems. We incorporate the Interplanetary File System (IPFS) to reduce the cost of storing insurance data. This study also attempts to propose an arbitration mechanism in the event of a car insurance dispute.

11.
Sensors (Basel) ; 23(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139505

RESUMEN

In this work, a secure architecture to send data from an Internet of Things (IoT) device to a blockchain-based supply chain is presented. As is well known, blockchains can process critical information with high security, but the authenticity and accuracy of the stored and processed information depend primarily on the reliability of the information sources. When this information requires acquisition from uncontrolled environments, as is the normal situation in the real world, it may be, intentionally or unintentionally, erroneous. The entities that provide this external information, called Oracles, are critical to guarantee the quality and veracity of the information generated by them, thus affecting the subsequent blockchain-based applications. In the case of IoT devices, there are no effective single solutions in the literature for achieving a secure implementation of an Oracle that is capable of sending data generated by a sensor to a blockchain. In order to fill this gap, in this paper, we present a holistic solution that enables blockchains to verify a set of security requirements in order to accept information from an IoT Oracle. The proposed solution uses Hardware Security Modules (HSMs) to address the security requirements of integrity and device trustworthiness, as well as a novel Public Key Infrastructure (PKI) based on a blockchain for authenticity, traceability, and data freshness. The solution is then implemented on Ethereum and evaluated regarding the fulfillment of the security requirements and time response. The final design has some flexibility limitations that will be approached in future work.

12.
Math Biosci Eng ; 20(9): 16886-16912, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37920039

RESUMEN

To guide the more reasonable and fair allocation of medical resources, to solve the problem of fee prices negotiated by various subjects in the medical and health system and patient payment, and to solve the problem of how to ensure the privacy, accuracy, consistency and traceability of data in the process of collecting patient information in each hospital, according to the operation process of a remote consultation service, a decentralized remote intelligent consultation blockchain model is proposed. The model uses the improved ant colony algorithm under a smart contract and studies the practicality of the improved ant colony algorithm on the multi-node remote consultation service simulation platform. According to the experimental analysis results, the improved ant colony algorithm can automatically execute and effectively match the target population under the smart contract.


Asunto(s)
Cadena de Bloques , Consulta Remota , Humanos , Algoritmos , Simulación por Computador , Hospitales
13.
Comput Biol Med ; 167: 107630, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37952305

RESUMEN

The Corona virus outbreak sped up the process of digitalizing healthcare. The ubiquity of IoT devices in healthcare has thrust the Healthcare Internet of Things (HIoT) to the forefront as a viable answer to the shortage of healthcare professionals. However, the medical field's ability to utilize this technology may be constrained by rules governing the sharing of data and privacy issues. Furthermore, endangering human life is what happens when a medical machine learning system is tricked or hacked. As a result, robust protections against cyberattacks are essential in the medical sector. This research uses two technologies, namely federated learning and blockchain, to solve these problems. The ultimate goal is to construct a trusted federated learning system on the blockchain that can predict people who are at risk for developing diabetes. The study's findings were deemed satisfactory as it achieved a multilayer perceptron accuracy of 97.11% and an average federated learning accuracy of 93.95%.


Asunto(s)
Cadena de Bloques , Infecciones por Coronavirus , Coronavirus , Educación Médica , Humanos , Privacidad
14.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896447

RESUMEN

Demand response (DR) has been studied widely in the smart grid literature, however, there is still a significant gap in approaches that address security, privacy, and robustness of settlement processes simultaneously. The need for security and robustness emerges as a vital property, as Internet of Things (IoT) devices become part of the smart grid; in the form of smart meters, home energy management systems (HEMSs), intelligent transformers, and so on. In this paper, we use energy blockchain to secure energy transactions among customers and the utility. In addition, we formulate a mixed-strategy stochastic game model to address uncertainties in DR contributions of agents and achieve optimal demand response decisions. This model utilizes the processing hardware of customers for block mining, stores customer DR agreements as distributed ledgers, and offers a smart contract and consensus algorithm for energy transaction validation. We use a real dataset of residential demand profiles and photovoltaic (PV) generation to validate the performance of the proposed scheme. The results show the impact of electric vehicle (EV) discharging and customer demand reduction on increasing the probability of successful block mining and improving customer profits. Moreover, the results demonstrate the security and robustness of our consensus algorithm for detecting malicious activities.

15.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896628

RESUMEN

With the rapid advancement of network communication and big data technologies, the Internet of Things (IoT) has permeated every facet of our lives. Meanwhile, the interconnected IoT devices have generated a substantial volume of data, which possess both economic and strategic value. However, owing to the inherently open nature of IoT environments and the limited capabilities and the distributed deployment of IoT devices, traditional access control methods fall short in addressing the challenges of secure IoT data management. On the one hand, the single point of failure issue is inevitable for the centralized access control schemes. On the other hand, most decentralized access control schemes still face problems such as token underutilization, the insecure distribution of user permissions, and inefficiency.This paper introduces a blockchain-based access control framework to address these challenges. Specifically, the proposed framework enables data owners to host their data and achieves user-defined lightweight data management. Additionally, through the strategic amalgamation of smart contracts and hash-chains, our access control scheme can limit the number of times (i.e., n-times access) a user can access the IoT data before the deadline. This also means that users can utilize their tokens multiple times (predefined by the data owner) within the deadline, thereby improving token utilization while ensuring strict access control. Furthermore, by leveraging the intrinsic characteristics of blockchain, our framework allows data owners to gain capabilities for auditing the access records of their data and verifying them. To empirically validate the effectiveness of our proposed framework and approach, we conducted extensive simulations, and the experimental results demonstrated the feasibility and efficiency of our solution.

16.
Sensors (Basel) ; 23(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631574

RESUMEN

The reliable circulation of automotive supply chain data is crucial for automotive manufacturers and related enterprises as it promotes efficient supply chain operations and enhances their competitiveness and sustainability. However, with the increasing prominence of privacy protection and information security issues, traditional data sharing solutions are no longer able to meet the requirements for highly reliable secure storage and flexible access control. In response to this demand, we propose a secure data storage and access control scheme for the supply chain ecosystem based on the enterprise-level blockchain platform Hyperledger Fabric. The design incorporates a dual-layer attribute-based auditable access control model for access control, with four smart contracts aimed at coordinating and implementing access policies. The experimental results demonstrate that the proposed approach exhibits significant advantages under large-scale data and multi-attribute conditions. It enables fine-grained, dynamic access control under ciphertext and maintains high throughput and security in simulated real-world operational scenarios.

17.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631638

RESUMEN

The rental of houses is a common economic activity. However, there are many inconveniences that arise when renting a property. The lack of trust between the landlord and the tenant due to fraud or squatters makes it necessary to involve third parties to minimize risk. A blockchain (such as Ethereum) provides an ideal solution to act as a low-cost intermediary. This paper proposes the use of non-fungible tokens (NFTs) based on ERC-4519 for smart home tokenization. The ERC-4519 is an Ethereum standard for describing NFTs tied to physical assets, allowing smart homes (assets) to be linked to NFTs so that the smart homes can interact with the blockchain and perform transactions, know their landlord (owner) and assigned tenant (user), whether they are authenticated or not, and know their operating mode (NFT state). The payments associated with the rental process are made using the NFT, eliminating the need for additional fungible tokens and simplifying the process. The entire rental process is described and illustrated with a proof of concept using a Pycom Wipy 3.0 as a smart home gateway and a smart contract programmed in Solidity, which is deployed on the Goerli Testnet for Ethereum. Experimental results show that the smart home gateway takes a few tens of milliseconds to complete a transaction, and the transaction costs of the relevant functions of the smart contract are quite affordable.

18.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631785

RESUMEN

With the rapid development and widespread application of blockchain technology in recent years, smart contracts running on blockchains often face security vulnerability problems, resulting in significant economic losses. Unlike traditional programs, smart contracts cannot be modified once deployed, and vulnerabilities cannot be remedied. Therefore, the vulnerability detection of smart contracts has become a research focus. Most existing vulnerability detection methods are based on rules defined by experts, which are inefficient and have poor scalability. Although there have been studies using machine learning methods to extract contract features for vulnerability detection, the features considered are singular, and it is impossible to fully utilize smart contract information. In order to overcome the limitations of existing methods, this paper proposes a smart contract vulnerability detection method based on deep learning and multimodal decision fusion. This method also considers the code semantics and control structure information of smart contracts. It integrates the source code, operation code, and control-flow modes through the multimodal decision fusion method. The deep learning method extracts five features used to represent contracts and achieves high accuracy and recall rates. The experimental results show that the detection accuracy of our method for arithmetic vulnerability, re-entrant vulnerability, transaction order dependence, and Ethernet locking vulnerability can reach 91.6%, 90.9%, 94.8%, and 89.5%, respectively, and the detected AUC values can reach 0.834, 0.852, 0.886, and 0.825, respectively. This shows that our method has a good vulnerability detection effect. Furthermore, ablation experiments show that the multimodal decision fusion method contributes significantly to the fusion of different modalities.

19.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37447981

RESUMEN

With the increasing growth rate of smart home devices and their interconnectivity via the Internet of Things (IoT), security threats to the communication network have become a concern. This paper proposes a learning engine for a smart home communication network that utilizes blockchain-based secure communication and a cloud-based data evaluation layer to segregate and rank data on the basis of three broad categories of Transactions (T), namely Smart T, Mod T, and Avoid T. The learning engine utilizes a neural network for the training and classification of the categories that helps the blockchain layer with improvisation in the decision-making process. The contributions of this paper include the application of a secure blockchain layer for user authentication and the generation of a ledger for the communication network; the utilization of the cloud-based data evaluation layer; the enhancement of an SI-based algorithm for training; and the utilization of a neural engine for the precise training and classification of categories. The proposed algorithm outperformed the Fused Real-Time Sequential Deep Extreme Learning Machine (RTS-DELM) system, the data fusion technique, and artificial intelligence Internet of Things technology in providing electronic information engineering and analyzing optimization schemes in terms of the computation complexity, false authentication rate, and qualitative parameters with a lower average computation complexity; in addition, it ensures a secure, efficient smart home communication network to enhance the lifestyle of human beings.


Asunto(s)
Inteligencia Artificial , Cadena de Bloques , Humanos , Aprendizaje Automático , Aprendizaje , Algoritmos
20.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37447998

RESUMEN

In this paper, we propose a smart contract broker to improve the reusability of smart contracts in a blockchain environment. The current blockchain platform lacks a standard approach to sharing and managing smart contracts, which makes it difficult for developers to reuse them and leads to efficiency issues. The proposed smart contract broker uses tags to identify and organize smart contracts, and it provides an environment for comparing and reusing smart contracts. This improves the reusability of smart contracts and efficiency. The proposed smart contract broker can be applied as a reference model that increases the flexibility and reusability of smart contract management in a blockchain environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA