Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Pharmacol ; 15: 1465872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263569

RESUMEN

Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.

2.
Redox Biol ; 76: 103319, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39178732

RESUMEN

Mitochondrial creatine kinase (mtCK) regulates the "fast" export of phosphocreatine to support cytoplasmic phosphorylation of ADP to ATP which is more rapid than direct ATP export. Such "creatine-dependent" phosphate shuttling is attenuated in several muscles, including the heart, of the D2.mdx mouse model of Duchenne muscular dystrophy at only 4 weeks of age. However, the degree to which creatine-dependent and -independent systems of phosphate shuttling progressively worsen or potentially adapt in a hormetic manner throughout disease progression remains unknown. Here, we performed a series of proof-of-principle investigations designed to determine how phosphate shuttling pathways worsen or adapt in later disease stages in D2.mdx (12 months of age). We also determined whether changes in creatine-dependent phosphate shuttling are linked to alterations in mtCK thiol redox state. In permeabilized muscle fibres prepared from cardiac left ventricles, we found that 12-month-old male D2.mdx mice have reduced creatine-dependent pyruvate oxidation and elevated complex I-supported H2O2 emission (mH2O2). Surprisingly, creatine-independent ADP-stimulated respiration was increased and mH2O2 was lowered suggesting that impairments in the faster mtCK-mediated phosphocreatine export system resulted in compensation of the alternative slower pathway of ATP export. The apparent impairments in mtCK-dependent bioenergetics occurred independent of mtCK protein content but were related to greater thiol oxidation of mtCK and a more oxidized cellular environment (lower GSH:GSSG). Next, we performed a proof-of-principle study to determine whether creatine-dependent bioenergetics could be enhanced through chronic administration of the mitochondrial-targeting, ROS-lowering tetrapeptide, SBT-20. We found that 12 weeks of daily treatment with SBT-20 (from day 4-∼12 weeks of age) increased respiration and lowered mH2O2 only in the presence of creatine in D2.mdx mice without affecting calcium-induced mitochondrial permeability transition activity. In summary, creatine-dependent mitochondrial bioenergetics are attenuated in older D2.mdx mice in relation to mtCK thiol oxidation that seem to be countered by increased creatine-independent phosphate shuttling as a unique form of mitohormesis. Separate results demonstrate that creatine-dependent bioenergetics can also be enhanced with a ROS-lowering mitochondrial-targeting peptide. These results demonstrate a specific relationship between redox stress and mitochondrial hormetic reprogramming during dystrophin deficiency with proof-of-principle evidence that creatine-dependent bioenergetics could be modified with mitochondrial-targeting small peptide therapeutics.

5.
Cell Rep ; 41(4): 111508, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288714

RESUMEN

Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Ratones , Ataxina-2/genética , Ataxina-2/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Preparaciones Farmacéuticas , Ácido Etidrónico , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Oligonucleótidos Antisentido/genética
6.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794816

RESUMEN

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Orphanet J Rare Dis ; 17(1): 269, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840979

RESUMEN

Ichthyosis covers a wide spectrum of diseases affecting the cornification of the skin. In recent years, new advances in understanding the pathophysiology of ichthyosis have been made. This knowledge, combined with constant development of pathogenesis-based therapies, such as protein replacement therapy and gene therapy, are rather promising for patients with inherited skin diseases. Several ongoing trials are investigating the potency of these new approaches and various studies have already been published. Furthermore, a lot of case series report that biological therapeutics are effective treatment options, mainly for Netherton syndrome and autosomal recessive congenital ichthyosis. It is expected that some of these new therapies will prove their efficacy and will be incorporated in the treatment of ichthyosis.


Asunto(s)
Ictiosis , Síndrome de Netherton , Humanos , Ictiosis/genética , Ictiosis/terapia , Piel , Neoplasias Cutáneas
8.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408914

RESUMEN

Ambroxol (ABX) is a mucolytic agent used for the treatment of respiratory diseases. Bioactivity has been demonstrated as an enhancement effect on lysosomal acid ß-glucosidase (ß-Glu) activity in Gaucher disease (GD). The positive effects observed have been attributed to a mechanism of action similar to pharmacological chaperones (PCs), but an exact mechanistic description is still pending. The current study uses cell culture and in vitro assays to study the effects of ABX on ß-Glu activity, processing, and stability upon ligand binding. Structural analogues bromohexine, 4-hydroxybromohexine, and norbromohexine were screened for chaperone efficacy, and in silico docking was performed. The sugar mimetic isofagomine (IFG) strongly inhibits ß-Glu, while ABX exerts its inhibitory effect in the micromolar range. In GD patient fibroblasts, IFG and ABX increase mutant ß-Glu activity to identical levels. However, the characteristics of the banding patterns of Endoglycosidase-H (Endo-H)-digested enzyme and a substantially lower half-life of ABX-treated ß-Glu suggest different intracellular processing. In line with this observation, IFG efficiently stabilizes recombinant ß-Glu against thermal denaturation in vitro, whereas ABX exerts no significant effect. Additional ß-Glu enzyme activity testing using Bromohexine (BHX) and two related structures unexpectedly revealed that ABX alone can refunctionalize ß-Glu in cellula. Taken together, our data indicate that ABX has little in vitro ability to act as PC, so the mode of action requires further clarification.


Asunto(s)
Ambroxol , Enfermedad de Gaucher , Ambroxol/farmacología , Ambroxol/uso terapéutico , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , beta-Glucosidasa/química
9.
Neoplasia ; 23(12): 1261-1274, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781084

RESUMEN

A major challenge to the treatment of advanced prostate cancer (PCa) is the development of resistance to androgen-deprivation therapy (ADT) and chemotherapy. It is imperative to discover effective therapies to overcome drug resistance and improve clinical outcomes. We have developed a novel class of silicon-containing compounds and evaluated the anticancer activities and mechanism of action using cellular and animal models of drug-resistant PCa. Five organosilicon compounds were evaluated for their anticancer activities in the NCI-60 panel and established drug-resistant PCa cell lines. GH1504 exhibited potent in vitro cytotoxicity in a broad spectrum of human cancer cells, including PCa cells refractory to ADT and chemotherapy. Molecular studies identified several potential targets of GH1504, most notably androgen receptor (AR), AR variant 7 (AR-v7) and survivin. Mechanistically, GH1504 may promote the protein turnover of AR, AR-v7 and survivin, thereby inducing apoptosis in ADT-resistant and chemoresistant PCa cells. Animal studies demonstrated that GH1504 effectively inhibited the in vivo growth of ADT-resistant CWR22Rv1 and chemoresistant C4-2B-TaxR xenografts in subcutaneous and intraosseous models. These preclinical results indicated that GH1504 is a promising lead that can be further developed as a novel therapy for drug-resistant PCa.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Compuestos de Organosilicio/farmacología , Neoplasias de la Próstata Resistentes a la Castración , Animales , Línea Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Eur Cytokine Netw ; 32(4): 73-82, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35118945

RESUMEN

Inflammatory bowel disease (IBD), including Crohn disease and ulcerative colitis, with multifactorial etiologies has led to a global health-associated burden in many countries. Substantial efforts are devoted to understand the pathogenesis, behavioral and environmental triggers, which may be specifically valuable for the treatment of IBD. The specific pathogenesis underlying IBD is as yet incompletely understood. The use of anti-cytokine therapy and small molecule agents targeting the immune system is thought to restore the body's intestinal barrier function and relieve inflammation with manageable adverse effects. In this review, we report recent advances in anti-cytokine therapy and treatment with small molecule agents for the management of IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Inflamación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
11.
J Proteomics ; 234: 104084, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359941

RESUMEN

Protobothrops mucrosquamatus, also known as the brown spotted pit viper or Taiwanese habu, is a medically significant venomous snake in Taiwan, especially in the northern area. To more fully understand the proteome profile of P. mucrosquamatus, we characterized its venom composition using a bottom-up proteomic approach. Whole venom components were fractionated by RP-HPLC and then analyzed by SDS-PAGE. Each protein band in gels was excised and subjected to protein identification by LC-MS/MS. A subsequent proteomic analysis revealed the presence of 61 distinct proteins belonging to 19 families in P. mucrosquamatus venom. Snake venom metalloproteinase (SVMP; 29.4%), C-type lectin (CLEC; 21.1%), snake venom serine protease (SVSP; 17.6%) and phospholipase A2 (PLA2; 15.9%) were the most abundant protein families, whereas several low-abundance proteins, categorized into eight protein families, were demonstrated in P. mucrosquamatus venom for the first time. Because PLA2 is known to make a major contribution to venom lethality, we evaluated whether the known PLA2 inhibitor, varespladib, was capable of preventing the toxic effects of P. mucrosquamatus venom. This small-molecule drug demonstrated the ability to inhibit PLA2 activity in vitro (IC50 = 101.3 nM). It also blunted lethality in vivo, prolonging survival following venom injection in a mouse model, but it showed limited potency against venom-induced local hemorrhage in this model. Our findings provide essential biological and pathophysiological insights into the composition of P. mucrosquamatus venom and suggest PLA2 inhibition as an adjunctive or alternative therapeutic strategy in the clinical management of P. mucrosquamatus envenoming in emergency medicine. SIGNIFICANCE: P. mucrosquamatus envenomation is a significant medical concern in Taiwan, especially in the northern region. Although antivenom is commonly used for rescuing P. mucrosquamatus envenoming, severe clinical events still occur, with more than 20% of cases requiring surgical intervention. Small-molecule therapy offers several advantages as a potential adjunctive, or even alternative, to antivenom treatment, such as heat stability, low antigenicity and ease of administration, among others. A deeper understanding of the venom proteome of P. mucrosquamatus would aid in the discovery of small-molecule drugs that could be repurposed to target specific venom proteins. Here, we applied a bottom-up proteomic approach to characterize the protein profile of P. mucrosquamatus venom. Varespladib, a small-molecule drug used to treat inflammatory disease, was repurposed to inhibit the toxicity of P. mucrosquamatus venom, and was shown to reduce the lethal effects of P. mucrosquamatus envenomation in a rodent model. Varespladib might be used as a first-aid therapeutic against P. mucrosquamatus envenoming in the pre-referral period and/or as an adjunctive agent administered together with anti-P. mucrosquamatus antivenom.


Asunto(s)
Proteoma , Trimeresurus , Acetatos , Animales , Antivenenos , Cromatografía Liquida , Indoles , Cetoácidos , Ratones , Fosfolipasas A2 , Proteómica , Roedores , Venenos de Serpiente , Taiwán , Espectrometría de Masas en Tándem
12.
Prostate ; 80(12): 993-1005, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32559345

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) is the mainstay of treatment for castration-resistant prostate cancer (CRPC). Unfortunately, although ADT initially prolongs survival, most patients relapse and develop resistance. Clinical failure of these treatments in CRPC highlights the urgent need to develop novel strategies to more effectively block androgen receptor (AR) signaling and target other oncogenic factors responsible for ADT resistance. METHODS: We developed a small-molecule compound LG1836 and investigated the in vitro and in vivo activity of LG1836 against CRPC in cellular and animal models. RESULTS: LG1836 exhibits potent in vitro cytotoxicity in CRPC cells. Mechanistic studies demonstrated that LG1836 inhibits the expression of AR and AR variant 7, partially mediated via proteasome-dependent protein degradation. LG1836 also suppresses survivin expression and effectively induces apoptosis in CRPC cells. Significantly, as a single agent, LG1836 is therapeutically efficacious in suppressing the in vivo growth of CRPC in the subcutaneous and intraosseous models and extends the survival of tumor-bearing mice. CONCLUSIONS: These preclinical studies indicate that LG1836 is a promising lead compound for the treatment of CRPC.


Asunto(s)
Piperidinas/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Antagonistas de Receptores Androgénicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Neoplasias de la Próstata Resistentes a la Castración/patología , Distribución Aleatoria , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/metabolismo , Survivin/antagonistas & inhibidores , Survivin/biosíntesis , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Am J Cancer Res ; 9(11): 2515-2530, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815050

RESUMEN

Colorectal cancer is one of the most commonly diagnosed malignancies among males and females worldwide. Although China is a country with a low incidence of colorectal cancer, with the improvement of China's economy and lifestyle changes, the incidence rate in China has generally increased in recent years, and the morbidity and mortality of colorectal cancer rank fifth among those of all malignant tumours. Furthermore, despite recent improvements in screening strategies and treatments for colorectal cancer, the prognosis of advanced colorectal cancer is still poor, mainly due to the recurrence or distant metastasis of this disease. Thus, colorectal cancer still seriously threatens the health and life of people and is a major public health problem worthy of further study. Recently, accumulating evidence has revealed that colorectal carcinogenesis might be a multistep process driven by progressive genetic abnormalities, including changes in lncRNA expression. Moreover, a large number of studies have discovered and studied the abnormal expression of lncRNAs in colorectal cancer, providing a promising target for the diagnosis and treatment of colorectal cancer, which will promote human understanding of the pathogenesis of colorectal cancer and improve diagnosis and treatment. Therefore, in the present review, we mainly summarize the present status of colorectal cancer, the characteristics, functions and clinical perspectives of lncRNAs, and the current therapeutic methods used for colorectal cancer, especially the application of lncRNAs in the treatment of colorectal cancer. It is hoped that this review will give readers a new understanding of the roles of lncRNAs in colorectal cancer.

15.
Cancer Lett ; 446: 62-72, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30660650

RESUMEN

Bone metastasis is a major cause of prostate cancer (PCa) mortality. Although docetaxel chemotherapy initially extends patients' survival, in most cases PCa becomes chemoresistant and eventually progresses without a cure. In this study, we developed a novel small-molecule compound BKM1972, which exhibited potent in vitro cytotoxicity in PCa and other cancer cells regardless of their differences in chemo-responsiveness. Mechanistic studies demonstrated that BKM1972 effectively inhibited the expression of anti-apoptotic protein survivin and membrane-bound efflux pump ATP binding cassette B 1 (ABCB1, p-glycoprotein), presumably via signal transducer and activator of transcription 3 (Stat3). BKM1972 was well tolerated in mice and as a monotherapy, significantly inhibited the intraosseous growth of chemosensitive and chemoresistant PCa cells. These results indicate that BKM1972 is a promising small-molecule lead to treat PCa bone metastasis and overcome docetaxel resistance.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Antagonistas de los Receptores de Bradiquinina/farmacología , Proliferación Celular/efectos de los fármacos , Docetaxel/farmacología , Resistencia a Antineoplásicos , Organofosfonatos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Línea Celular Tumoral , Humanos , Masculino , Ratones Desnudos , Terapia Molecular Dirigida , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Survivin/genética , Survivin/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Expert Opin Pharmacother ; 19(3): 265-278, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29376435

RESUMEN

INTRODUCTION: Atopic Dermatitis (AD) is a common chronic inflammatory skin disorder with a constellation of symptoms. Currently, there are numerous therapies in various phases of drug development that target the pathogenesis of AD. AREAS COVERED: Our paper aims to examine small molecule therapies and other novel agents registered for clinical trial in the phase II and mainly phase III stages of development. A literature search using PubMed as well as Clinicaltrials.gov was conducted. Clinical trial evidence of these novel agents was compiled and assessed. Both topical and oral novel therapies with diverse range of mechanistic action are currently being studied, with varying success. These include phosphodiesterase-4 inhibitors, boron molecules, Janus kinase inhibitors, cannabinoid receptors agonists, kappa-opioid receptor agonists. A variety of compounds with yet undisclosed or unknown mechanisms of action are also being studied. EXPERT OPINION: Further research through extensive clinical trials will allow for more information about these targeted therapies and their potential place in the treatment algorithm of AD. Due to the success of such therapies in treating a spectrum of chronic inflammatory diseases, we remain hopeful that the successful development of targeted therapy for AD lies ahead.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Fármacos Dermatológicos/uso terapéutico , Antipruriginosos/uso terapéutico , Compuestos de Boro/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores Opioides kappa/agonistas
17.
Oncotarget ; 8(46): 80124-80138, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113289

RESUMEN

PURPOSE: Glioblastoma is a deadly brain cancer with a median survival time of ∼15 months. Ionizing radiation plus the DNA alkylator temozolomide (TMZ) is the current standard therapy. PAC-1, a procaspase-3 activating small molecule, is blood-brain barrier penetrant and has previously demonstrated ability to synergize with diverse pro-apoptotic chemotherapeutics. We studied if PAC-1 could enhance the activity of TMZ, and whether addition of PAC-1 to standard treatment would be feasible in spontaneous canine malignant gliomas. EXPERIMENTAL DESIGN: Using cell lines and online gene expression data, we identified procaspase-3 as a potential molecular target for most glioblastomas. We investigated PAC-1 as a single agent and in combination with TMZ against glioma cells in culture and in orthotopic rodent models of glioma. Three dogs with spontaneous gliomas were treated with an analogous human glioblastoma treatment protocol, with concurrent PAC-1. RESULTS: Procaspase-3 is expressed in gliomas, with higher gene expression correlating with increased tumor grade and decreased prognosis. PAC-1 is cytotoxic to glioma cells in culture and active in orthotopic rodent glioma models. PAC-1 added to TMZ treatments in cell culture increases apoptotic death, and the combination significantly increases survival in orthotopic glioma models. Addition of PAC-1 to TMZ and radiation was well-tolerated in 3 out of 3 pet dogs with spontaneous glioma, and partial to complete tumor reductions were observed. CONCLUSIONS: Procaspase-3 is a clinically relevant target for treatment of glioblastoma. Synergistic activity of PAC-1/TMZ in rodent models and the demonstration of feasibility of the combined regime in canine patients suggest potential for PAC-1 in the treatment of glioblastoma.

18.
Neurobiol Dis ; 105: 257-270, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28610891

RESUMEN

Mucolipidosis type IV (MLIV) is a lysosomal storage disease exhibiting progressive intellectual disability, motor impairment, and premature death. There is currently no cure or corrective treatment. The disease results from mutations in the gene encoding mucolipin-1, a transient receptor potential channel believed to play a key role in lysosomal calcium egress. Loss of mucolipin-1 and subsequent defects lead to a host of cellular aberrations, including accumulation of glycosphingolipids (GSLs) in neurons and other cell types, microgliosis and, as reported here, cerebellar Purkinje cell loss. Several studies have demonstrated that N-butyldeoxynojirimycin (NB-DNJ, also known as miglustat), an inhibitor of the enzyme glucosylceramide synthase (GCS), successfully delays the onset of motor deficits, improves longevity, and rescues some of the cerebellar abnormalities (e.g., Purkinje cell death) seen in another lysosomal disease known as Niemann-Pick type C (NPC). Given the similarities in pathology between MLIV and NPC, we examined whether miglustat would be efficacious in ameliorating disease progression in MLIV. Using a full mucolipin-1 knockout mouse (Mcoln1-/-), we found that early miglustat treatment delays the onset and progression of motor deficits, delays cerebellar Purkinje cell loss, and reduces cerebellar microgliosis characteristic of MLIV disease. Quantitative mass spectrometry analyses provided new data on the GSL profiles of murine MLIV brain tissue and showed that miglustat partially restored the wild type profile of white matter enriched lipids. Collectively, our findings indicate that early miglustat treatment delays the progression of clinically relevant pathology in an MLIV mouse model, and therefore supports consideration of miglustat as a therapeutic agent for MLIV disease in humans.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Cerebelo/patología , Inhibidores Enzimáticos/uso terapéutico , Gliosis/tratamiento farmacológico , Trastornos del Movimiento/tratamiento farmacológico , Mucolipidosis , Células de Purkinje/efectos de los fármacos , 1-Desoxinojirimicina/uso terapéutico , Animales , Antígenos CD/metabolismo , Recuento de Células , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Gliosis/etiología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos del Movimiento/etiología , Mucolipidosis/complicaciones , Mucolipidosis/genética , Mucolipidosis/patología , Proteínas del Tejido Nervioso/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Células de Purkinje/patología , Retina/patología , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
19.
Mol Ther ; 25(6): 1395-1407, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28391962

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7ß1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7ß1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7ß1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.


Asunto(s)
Imidazoles/farmacología , Indoles/farmacología , Integrinas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Humanos , Integrinas/agonistas , Ratones , Ratones Endogámicos mdx , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Fuerza Muscular , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA