Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 254: 121378, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430758

RESUMEN

This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Ósmosis , Fósforo/metabolismo , Nitrógeno , Digestión , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
2.
Sci Total Environ ; 912: 169506, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123084

RESUMEN

This study focused on the removal of the total coliforms, fecal coliforms and four target antibiotics in the dissolved ozone flotation (DOF) thickening sludge process. Additionally, the thickened effluent chromaticity and its effect on thickened sludge hydrolysis process were investigated. Ozonation in the DOF process could inactivate coliforms by oxidizing cellular components and destroying genetic material, as well as altering the chemical structure of antibiotics, leading to the degradation of antibiotics. At an O3 dosage of 16 mg/g TS, the concentration of total coliforms and fecal coliforms decreased by 2.2 log and 2.4 log, corresponding to an overall removal rate of 99.4 % and 99.7 %, respectively. The total degradation rate of four target antibiotics (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) were 66.5 %, 68.8 %, 53.3 % and 57.5 %, respectively. The chromaticity removal rate of the thickened effluent reached 95 %. Analysis of fluorescence spectra indicated alterations in the fluorescence properties of dissolved organic matter, resulting in a decrease in fluorescence intensity by ozonation. The thickened sludge had higher hydrolysis rates, resulting in a greater production of volatile fatty acids (VFAs). This was mainly attributed to the increased amount of soluble protein and carbohydrate in the substrate after DOF treatment, which was more conducive for the rapid conversion of hydrolysis into VFAs during the initial stage. These results provided new ideas for upgrading and transforming the thickening process of wastewater treatment plants (WWTPs).


Asunto(s)
Antibacterianos , Ozono , Ozono/química , Aguas del Alcantarillado/química , Tetraciclina , Bacterias
3.
Sci Total Environ ; 842: 156874, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753468

RESUMEN

Sludge thickening in sewage treatment plants is an essential step to reduce the sewage sludge volume and provide space for collaborative anaerobic digestion of sludge and other urban organic wastes. Dissolved ozone flotation (DOF) is a novel choice worthy of application in the field of sludge thickening. In order to investigate the effect of DOF thickening, the total solid content (TS %) was used to characterize the thickening performance under different O3 dosage. The optimal condition was determined to be polyacrylamide (PAM) dosage = 3 ‰ TS, air floatation time = 2 h and O3 dosage = 12 mg/g TS, under which the TS % of raw-sewage sludge (RS) increased from 0.33 ± 0.01 % to 8.03 ± 0.06 %. In this study, the relationship between the sludge thickening performance, physicochemical properties, and the changes of organic matter (content, structure and molecular weight) in extracellular polymers (EPS) was systematically clarified. The results indicated that the DOF couple with PAM could change the sludge surface properties, destroy the sludge floc structure, release intracellular organic matter, and increase moisture fluidity. The surface hydrophilicity/hydrophobicity, protein (PN) secondary structure and moisture distribution were mainly responsible for sludge thickening performance. Moreover, the change of TS % during the DOF thickening process was mainly caused by the variations of the organic matter content in EMPS layer. The identification of key influencing factors was conducive to the further regulation and upgrading of the novel application for enhanced sludge thickening in sewage treatment plants.


Asunto(s)
Ozono , Aguas del Alcantarillado , Interacciones Hidrofóbicas e Hidrofílicas , Ozono/química , Polímeros , Aguas del Alcantarillado/química , Propiedades de Superficie , Eliminación de Residuos Líquidos
4.
Water Res ; 195: 116998, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714909

RESUMEN

Waste activated sludge (WAS) treatment has gained growing interests for its increasingly capacity and high process cost. Sludge thickening is generally the first process of the WAS treatment. However, traditional sludge thickening approach was restrained by large footprint, low thickening efficiency, and tendency of releasing phosphorus. Here, we reported a novel microfiltration (MF) membrane assisting forward osmosis (FO) process (MF-FO) for sludge thickening. The MF-FO reactor achieved a sludge thickening of the mixed liquor suspended solids (MLSS) concentration from approximately 7 to 50 g/L after 10-day operation. More importantly, the effluent quality after FO filtration was superior with total organic carbon (TOC), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and total phosphorus (TP) of 1.94 ± 0.46, 0.02 ± 0.07, 4.55 ± 1.59 and 0.24 ± 0.26 mg/L, respectively. Additionally, the integration of MF membrane successfully controlled the salinity of the MF-FO reactor in a low range of 1.6-3.1 mS/cm, which mitigated the flux decline of FO membrane and thus prolonged the operating time. In this case, the flux decline of FO membrane in the MF-FO reactor was mainly due to the membrane fouling. Furthermore, the fouling layer on the FO membrane surface was a gel layer mainly composed of biofoulants and organic foulants when the MLSS concentration was less than 30 g/L, while it turned to a cake layer when the MLSS concentration exceeded 30 g/L. Results reported here demonstrated that the MF-FO reactor is a promising WAS thickening technology for its excellent thickening performance and high effluent quality of FO membrane.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Reactores Biológicos , Filtración , Membranas Artificiales , Ósmosis , Salinidad , Aguas Residuales
5.
Bioresour Technol ; 291: 121833, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31357043

RESUMEN

High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%. Both were within the range of values typically obtained for HRAS-settler systems, albeit at a lower chemical requirement. The separated sludge had a high concentration of up to 47 g COD L-1, suppressing the need of further thickening before AD. Methanation tests showed a biogas yield of up to 68% on a COD basis. The use of a DAF separation system can thus enable direct organics removal at high sludge concentration and with low chemical needs.


Asunto(s)
Aguas del Alcantarillado , Biocombustibles , Floculación , Eliminación de Residuos Líquidos
6.
Water Res ; 143: 467-478, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29986255

RESUMEN

This work is to evaluate pilot-scale Revolving Algal Biofilm (RAB) reactors of two heights (0.9-m and 1.8-m tall) to treat supernatant from sludge sedimentation at Metropolitan Water Reclamation District of Greater Chicago (MWRD) for removing nutrients (N and P) as well as various metals. The RAB reactors demonstrated a superior performance in N and P removal as compared to control raceway ponds. Taller 1.8-m RAB reactors performed better than 0.9-m RAB reactors in terms of total nutrient removal and algal biomass productivity. At 7-day HRT, total P (TP) and Total Kjeldahl N (TKN) removal efficiency reached to 80% and 87%, respectively, while ortho-P and ammonia removal efficiency reached to 100%. Decreasing HRT led to an enhanced TP and TKN removal rate and nutrient removal capacity. At HRT of 1.3-day, the TP removal per footprint of 1.8-m tall RAB reactors was around 7-times higher than the open pond system. The RAB reactors also showed certain capabilities of removing metals from wastewater. The study demonstrated that RAB-based treatment process is an effective method to recover nutrients from municipal wastewater.


Asunto(s)
Metales/aislamiento & purificación , Microalgas , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Amoníaco/aislamiento & purificación , Biopelículas , Biomasa , Reactores Biológicos , Chicago , Diseño de Equipo , Nitrógeno/metabolismo , Fósforo/metabolismo , Estanques , Aguas del Alcantarillado , Aguas Residuales , Contaminantes Químicos del Agua/aislamiento & purificación
7.
Int J Environ Res Public Health ; 12(12): 15449-58, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26690186

RESUMEN

A single paragraph of about 200 words maximum. For research articles; abstracts should give a pertinent overview of the work. We strongly encourage authors to use the following style of structured abstracts; but without headings: (1) BACKGROUND: Place the question addressed in a broad context and highlight the purpose of the study; (2) METHODS: Describe briefly the main methods or treatments applied; (3) RESULTS: Summarize the article's main findings; and (4) CONCLUSION: Indicate the main conclusions or interpretations. The abstract should be an objective representation of the article: it must not contain results which are not presented and substantiated in the main text and should not exaggerate the main conclusions.


Asunto(s)
Modelos Teóricos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA