Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Trends Cogn Sci ; 28(4): 339-351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443198

RESUMEN

How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.


Asunto(s)
Consolidación de la Memoria , Humanos , Consolidación de la Memoria/fisiología , Electroencefalografía , Sueño/fisiología , Memoria/fisiología , Hipocampo/fisiología
2.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464146

RESUMEN

Sleep spindles are critical for memory consolidation and strongly linked to neurological disease and aging. Despite their significance, the relative influences of factors like sleep depth, cortical up/down states, and spindle temporal patterns on individual spindle production remain poorly understood. Moreover, spindle temporal patterns are typically ignored in favor of an average spindle rate. Here, we analyze spindle dynamics in 1008 participants from the Multi-Ethnic Study of Atherosclerosis using a point process framework. Results reveal fingerprint-like temporal patterns, characterized by a refractory period followed by a period of increased spindle activity, which are highly individualized yet consistent night-to-night. We observe increased timing variability with age and distinct gender/age differences. Strikingly, and in contrast to the prevailing notion, individualized spindle patterns are the dominant determinant of spindle timing, accounting for over 70% of the statistical deviance explained by all of the factors we assessed, surpassing the contribution of slow oscillation (SO) phase (~14%) and sleep depth (~16%). Furthermore, we show spindle/SO coupling dynamics with sleep depth are preserved across age, with a global negative shift towards the SO rising slope. These findings offer novel mechanistic insights into spindle dynamics with direct experimental implications and applications to individualized electroencephalography biomarker identification.

3.
Front Neuroinform ; 18: 1338886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375447

RESUMEN

Study objectives: We aimed to build a tool which facilitates manual labeling of sleep slow oscillations (SOs) and evaluate the performance of traditional sleep SO detection algorithms on such a manually labeled data set. We sought to develop improved methods for SO detection. Method: SOs in polysomnographic recordings acquired during nap time from ten older adults were manually labeled using a custom built graphical user interface tool. Three automatic SO detection algorithms previously used in the literature were evaluated on this data set. Additional machine learning and deep learning algorithms were trained on the manually labeled data set. Results: Our custom built tool significantly decreased the time needed for manual labeling, allowing us to manually inspect 96,277 potential SO events. The three automatic SO detection algorithms showed relatively low accuracy (max. 61.08%), but results were qualitatively similar, with SO density and amplitude increasing with sleep depth. The machine learning and deep learning algorithms showed higher accuracy (best: 99.20%) while maintaining a low prediction time. Conclusions: Accurate detection of SO events is important for investigating their role in memory consolidation. In this context, our tool and proposed methods can provide significant help in identifying these events.

4.
Front Hum Neurosci ; 18: 1342975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415278

RESUMEN

Background: Given sleep's crucial role in health and cognition, numerous sleep-based brain interventions are being developed, aiming to enhance cognitive function, particularly memory consolidation, by improving sleep. Research has shown that Transcranial Alternating Current Stimulation (tACS) during sleep can enhance memory performance, especially when used in a closed-loop (cl-tACS) mode that coordinates with sleep slow oscillations (SOs, 0.5-1.5Hz). However, sleep tACS research is characterized by mixed results across individuals, which are often attributed to individual variability. Objective/Hypothesis: This study targets a specific type of SOs, widespread on the electrode manifold in a short delay ("global SOs"), due to their close relationship with long-term memory consolidation. We propose a model-based approach to optimize cl-tACS paradigms, targeting global SOs not only by considering their temporal properties but also their spatial profile. Methods: We introduce selective targeting of global SOs using a classification-based approach. We first estimate the current elicited by various stimulation paradigms, and optimize parameters to match currents found in natural sleep during a global SO. Then, we employ an ensemble classifier trained on sleep data to identify effective paradigms. Finally, the best stimulation protocol is determined based on classification performance. Results: Our study introduces a model-driven cl-tACS approach that specifically targets global SOs, with the potential to extend to other brain dynamics. This method establishes a connection between brain dynamics and stimulation optimization. Conclusion: Our research presents a novel approach to optimize cl-tACS during sleep, with a focus on targeting global SOs. This approach holds promise for improving cl-tACS not only for global SOs but also for other physiological events, benefiting both research and clinical applications in sleep and cognition.

5.
Neurobiol Dis ; 191: 106409, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218457

RESUMEN

Interictal epileptiform discharges (IEDs) often co-occur across spatially-separated cortical regions, forming IED networks. However, the factors prompting IED propagation remain unelucidated. We hypothesized that slow oscillations (SOs) might facilitate IED propagation. Here, the amplitude and phase synchronization of SOs preceding propagating and non-propagating IEDs were compared in 22 patients with focal epilepsy undergoing intracranial electroencephalography (EEG) evaluation. Intracranial channels were categorized into the irritative zone (IZ) and normal zone (NOZ) regarding the presence of IEDs. During wakefulness, we found that pre-IED SOs within the IZ exhibited higher amplitudes for propagating IEDs than non-propagating IEDs (delta band: p = 0.001, theta band: p < 0.001). This increase in SOs was also concurrently observed in the NOZ (delta band: p = 0.04). Similarly, the inter-channel phase synchronization of SOs prior to propagating IEDs was higher than those preceding non-propagating IEDs in the IZ (delta band: p = 0.04). Through sliding window analysis, we observed that SOs preceding propagating IEDs progressively increased in amplitude and phase synchronization, while those preceding non-propagating IEDs remained relatively stable. Significant differences in amplitude occurred approximately 1150 ms before IEDs. During non-rapid eye movement (NREM) sleep, SOs on scalp recordings also showed higher amplitudes before intracranial propagating IEDs than before non-propagating IEDs (delta band: p = 0.006). Furthermore, the analysis of IED density around sleep SOs revealed that only high-amplitude sleep SOs demonstrated correlation with IED propagation. Overall, our study highlights that transient but widely distributed SOs are associated with IED propagation as well as generation in focal epilepsy during sleep and wakefulness, providing new insight into the EEG substrate supporting IED networks.


Asunto(s)
Electroencefalografía , Epilepsias Parciales , Humanos , Sueño , Electrocorticografía , Vigilia
6.
Eur J Neurosci ; 59(4): 613-640, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37675803

RESUMEN

Closed-loop auditory stimulation (CLAS) is a brain modulation technique in which sounds are timed to enhance or disrupt endogenous neurophysiological events. CLAS of slow oscillation up-states in sleep is becoming a popular tool to study and enhance sleep's functions, as it increases slow oscillations, evokes sleep spindles and enhances memory consolidation of certain tasks. However, few studies have examined the specific neurophysiological mechanisms involved in CLAS, in part because of practical limitations to available tools. To evaluate evidence for possible models of how sound stimulation during brain up-states alters brain activity, we simultaneously recorded electro- and magnetoencephalography in human participants who received auditory stimulation across sleep stages. We conducted a series of analyses that test different models of pathways through which CLAS of slow oscillations may affect widespread neural activity that have been suggested in literature, using spatial information, timing and phase relationships in the source-localized magnetoencephalography data. The results suggest that auditory information reaches ventral frontal lobe areas via non-lemniscal pathways. From there, a slow oscillation is created and propagated. We demonstrate that while the state of excitability of tissue in auditory cortex and frontal ventral regions shows some synchrony with the electroencephalography (EEG)-recorded up-states that are commonly used for CLAS, it is the state of ventral frontal regions that is most critical for slow oscillation generation. Our findings advance models of how CLAS leads to enhancement of slow oscillations, sleep spindles and associated cognitive benefits and offer insight into how the effectiveness of brain stimulation techniques can be improved.


Asunto(s)
Magnetoencefalografía , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Electroencefalografía/métodos , Encéfalo/fisiología
7.
J Sleep Res ; 33(1): e14027, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794602

RESUMEN

Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers. A total of 17 older participants were trained on a motor task involving two auditory-cued sequences. During a post-learning nap, two auditory cues were played: one associated to a learned (i.e., reactivated) sequence and one control. Performance during two delayed re-tests did not differ between reactivated and non-reactivated sequences. Moreover, both associated and control sounds modulated brain responses, yet there were no consistent differences between the auditory cue types. Our results collectively demonstrate that older adults do not benefit from specific reactivation of a motor memory trace by an associated auditory cue during post-learning sleep. Based on previous research, it is possible that auditory stimulation during post-learning sleep could have boosted motor memory consolidation in a non-specific manner.


Asunto(s)
Consolidación de la Memoria , Memoria , Adulto Joven , Humanos , Anciano , Memoria/fisiología , Consolidación de la Memoria/fisiología , Aprendizaje/fisiología , Sueño/fisiología , Señales (Psicología)
8.
Mol Neurodegener ; 18(1): 93, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041158

RESUMEN

BACKGROUND: Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS: We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS: APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid ß (Aß) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS: In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aß by microglia in an AD mouse model.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Ratones Transgénicos , Optogenética , Calcio/metabolismo , Sueño , Neuronas GABAérgicas/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética
9.
Front Netw Physiol ; 3: 1264395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808419

RESUMEN

ß-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in ß-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce ß-cell dynamics and study networks mimicking arrangements of ß-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.

10.
Neurosci Biobehav Rev ; 153: 105379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660843

RESUMEN

Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.

11.
Sleep ; 46(10)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37531587

RESUMEN

STUDY OBJECTIVES: Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS: Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS: Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS: Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.


Asunto(s)
Consolidación de la Memoria , Adulto Joven , Humanos , Estimulación Acústica , Consolidación de la Memoria/fisiología , Sueño/fisiología , Memoria/fisiología , Electroencefalografía
12.
Cell Rep Med ; 4(7): 101100, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37421946

RESUMEN

Insufficient sleep impairs glucose regulation, increasing the risk of diabetes. However, what it is about the human sleeping brain that regulates blood sugar remains unknown. In an examination of over 600 humans, we demonstrate that the coupling of non-rapid eye movement (NREM) sleep spindles and slow oscillations the night before is associated with improved next-day peripheral glucose control. We further show that this sleep-associated glucose pathway may influence glycemic status through altered insulin sensitivity, rather than through altered pancreatic beta cell function. Moreover, we replicate these associations in an independent dataset of over 1,900 adults. Of therapeutic significance, the coupling between slow oscillations and spindles was the most significant sleep predictor of next-day fasting glucose, even more so than traditional sleep markers, relevant to the possibility of an electroencephalogram (EEG) index of hyperglycemia. Taken together, these findings describe a sleeping-brain-body framework of optimal human glucose homeostasis, offering a potential prognostic sleep signature of glycemic control.


Asunto(s)
Ondas Encefálicas , Sueño , Adulto , Humanos , Sueño/fisiología , Electroencefalografía , Glucosa , Homeostasis
13.
J Neurosci ; 43(25): 4738-4749, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37230765

RESUMEN

The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age. With aging, there is evidence for sleep disruption in PS19 mice, characterized by reduced REM duration, increased non-REM and REM fragmentation, and more frequent brief arousals at the macrolevel and reduced spindle density, SO density, and spindle-SO coupling at the microlevel. In ∼33% of aged PS19 mice, we unexpectedly observed abnormal goal-directed behaviors in REM, including mastication, paw grasp, and forelimb/hindlimb extension, seemingly consistent with REM behavior disorder (RBD). Oral administration of DORA-12 in aged PS19 mice increased non-REM and REM duration, albeit with shorter bout lengths, and increased spindle density, spindle duration, and SO density without change to spindle-SO coupling, power in either the SO or spindle bands, or the arousal index. We observed a significant effect of DORA-12 on objective measures of RBD, thereby encouraging future exploration of DORA effects on sleep-mediated cognition and RBD treatment.SIGNIFICANCE STATEMENT The specific effect of tauopathy on sleep macroarchitecture and microarchitecture throughout aging remains unknown. Our key findings include the following: (1) the identification of a sleep EEG signature constituting an early biomarker of impending tauopathy; (2) sleep physiology deteriorates with aging that are also markers of off-line cognitive processing; (3) the novel observation that dream enactment behaviors reminiscent of RBD occur, likely the first such observation in a tauopathy model; and (4) a dual orexin receptor antagonist is capable of restoring several of the sleep macroarchitecture and microarchitecture abnormalities.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Tauopatías , Masculino , Femenino , Ratones , Animales , Antagonistas de los Receptores de Orexina/farmacología , Sueño/fisiología , Tauopatías/tratamiento farmacológico , Fenotipo
14.
Sleep ; 46(6)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37039660

RESUMEN

Closed-loop acoustic stimulation (CLAS) during sleep has shown to boost slow wave (SW) amplitude and spindle power. Moreover, sleep SW have been classified based on different processes of neuronal synchronization. Thus, different types of SW events may have distinct functional roles and be differentially affected by external stimuli. However, the SW synchronization processes affected by CLAS are not well understood. Here, we studied the effect of CLAS on the dissociation of SW events based on two features of neuronal synchronization in the electroencephalogram (topological spread and wave slope). We evaluated and classified individual SW events of 14 healthy subjects during a CLAS stimulated (STM) and a control night (CNT). Three main categories of SW events were found denoting (C1) steep slope SW with global spread, (C2) flat-slope waves with localized spread and homeostatic decline, and (C3) multipeaked flat-slope events with global spread. Comparing between conditions, we found a consistent increase of event proportion and trough amplitudes for C1 events during the time of stimulation. Furthermore, we found similar increases in post-stimulus spectral power in θ, ß, and σ frequencies for CNT vs STIM condition independently of sleep stage or SW categories. However, topological analysis showed differentiated spatial dynamics in N2 and N3 for SW categories and the co-occurrence with spindle events. Our findings support the existence of multiple types of SW with differential response to external stimuli and possible distinct neuronal mechanisms.


Asunto(s)
Fases del Sueño , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Fases del Sueño/fisiología , Electroencefalografía , Voluntarios Sanos
15.
Curr Biol ; 33(6): 1171-1178.e4, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36827988

RESUMEN

Octopuses, which are among the most intelligent invertebrates,1,2,3,4 have no skeleton and eight flexible arms whose sensory and motor activities are at once autonomous and coordinated by a complex central nervous system.5,6,7,8 The octopus brain contains a very large number of neurons, organized into numerous distinct lobes, the functions of which have been proposed based largely on the results of lesioning experiments.9,10,11,12,13 In other species, linking brain activity to behavior is done by implanting electrodes and directly correlating electrical activity with observed animal behavior. However, because the octopus lacks any hard structure to which recording equipment can be anchored, and because it uses its eight flexible arms to remove any foreign object attached to the outside of its body, in vivo recording of electrical activity from untethered, behaving octopuses has thus far not been possible. Here, we describe a novel technique for inserting a portable data logger into the octopus and implanting electrodes into the vertical lobe system, such that brain activity can be recorded for up to 12 h from unanesthetized, untethered octopuses and can be synchronized with simultaneous video recordings of behavior. In the brain activity, we identified several distinct patterns that appeared consistently in all animals. While some resemble activity patterns in mammalian neural tissue, others, such as episodes of 2 Hz, large amplitude oscillations, have not been reported. By providing an experimental platform for recording brain activity in behaving octopuses, our study is a critical step toward understanding how the brain controls behavior in these remarkable animals.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Octopodiformes , Animales , Octopodiformes/fisiología , Encéfalo/fisiología , Conducta Animal , Neuronas , Mamíferos
16.
Neuroimage ; 266: 119820, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535324

RESUMEN

Targeted memory reactivation (TMR) is a technique in which sensory cues associated with memories during wake are used to trigger memory reactivation during subsequent sleep. The characteristics of such cued reactivation, and the optimal placement of TMR cues, remain to be determined. We built an EEG classification pipeline that discriminated reactivation of right- and left-handed movements and found that cues which fall on the up-going transition of the slow oscillation (SO) are more likely to elicit a classifiable reactivation. We also used a novel machine learning pipeline to predict the likelihood of eliciting a classifiable reactivation after each TMR cue using the presence of spindles and features of SOs. Finally, we found that reactivations occurred either immediately after the cue or one second later. These findings greatly extend our understanding of memory reactivation and pave the way for development of wearable technologies to efficiently enhance memory through cueing in sleep.


Asunto(s)
Señales (Psicología) , Consolidación de la Memoria , Humanos , Memoria/fisiología , Sueño/fisiología , Consolidación de la Memoria/fisiología , Aprendizaje Automático
17.
J Neurosci ; 42(50): 9387-9400, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36344267

RESUMEN

Slow oscillations are an emergent activity of the cerebral cortex network consisting of alternating periods of activity (Up states) and silence (Down states). Up states are periods of persistent cortical activity that share properties with that of underlying wakefulness. However, the occurrence of Down states is almost invariably associated with unconsciousness, both in animal models and clinical studies. Down states have been attributed relevant functions, such as being a resetting mechanism or breaking causal interactions between cortical areas. But what do Down states consist of? Here, we explored in detail the network dynamics (e.g., synchronization and phase) during these silent periods in vivo (male mice), in vitro (ferrets, either sex), and in silico, investigating various experimental conditions that modulate them: anesthesia levels, excitability (electric fields), and excitation/inhibition balance. We identified metastability as two complementary phases composing such quiescence states: a highly synchronized "deterministic" period followed by a low-synchronization "stochastic" period. The balance between these two phases determines the dynamical properties of the resulting rhythm, as well as the responsiveness to incoming inputs or refractoriness. We propose detailed Up and Down state cycle dynamics that bridge cortical properties emerging at the mesoscale with their underlying mechanisms at the microscale, providing a key to understanding unconscious states.SIGNIFICANCE STATEMENT The cerebral cortex expresses slow oscillations consisting of Up (active) and Down (silent) states. Such activity emerges not only in slow wave sleep, but also under anesthesia and in brain lesions. Down states functionally disconnect the network, and are associated with unconsciousness. Based on a large collection of data, novel data analysis approaches and computational modeling, we thoroughly investigate the nature of Down states. We identify two phases: a highly synchronized "deterministic" period, followed by a low-synchronization "stochastic" period. The balance between these two phases determines the dynamic properties of the resulting rhythm and responsiveness to incoming inputs. This finding reconciles different theories of slow rhythm generation and provides clues about how the brain switches from conscious to unconscious brain states.


Asunto(s)
Hurones , Sueño de Onda Lenta , Animales , Masculino , Ratones , Corteza Cerebral/fisiología , Vigilia , Inconsciencia
18.
Adv Exp Med Biol ; 1384: 17-29, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36217076

RESUMEN

A growing number of studies have shown the strong relationship between sleep and different cognitive processes, especially those that involve memory consolidation. Traditionally, these processes were attributed to mechanisms related to the macroarchitecture of sleep, as sleep cycles or the duration of specific stages, such as the REM stage. More recently, the relationship between different cognitive traits and specific waves (sleep spindles or slow oscillations) has been studied. We here present the most important physiological processes induced by sleep, with particular focus on brain electrophysiology. In addition, recent and classical literature were reviewed to cover the gap between sleep and cognition, while illustrating this relationship by means of clinical examples. Finally, we propose that future studies may focus not only on analyzing specific waves, but also on the relationship between their characteristics as potential biomarkers for multiple diseases.


Asunto(s)
Electroencefalografía , Consolidación de la Memoria , Encéfalo/fisiología , Cognición , Consolidación de la Memoria/fisiología , Sueño/fisiología , Fases del Sueño/fisiología
19.
Neurosci Biobehav Rev ; 142: 104909, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228927

RESUMEN

Isolated Rapid Eye Movement Sleep (REM) behaviour disorder (iRBD) is a prodromal sign of neurodegenerative disorders. Empirical findings point to a role of non-REM (NREM) sleep alterations in neurodegenerative processes. Therefore, the interest in NREM sleep electroencephalography (EEG) of iRBD is progressively increasing. The present review aims to provide an updated state of the art on NREM sleep electrophysiology in iRBD. First, we describe findings on NREM EEG power spectra. Then, we consider specific NREM sleep EEG hallmarks (i.e., slow waves, slow oscillations, K-complexes, sleep spindles). Finally, we focus on NREM sleep instability. The reviewed literature is small and heterogeneous, but rapidly growing. The most consistent findings point to alteration of sleep spindles and cyclic alternating pattern in RBD. A larger discrepancy characterized results on slow wave activity, but recent studies using a topographical approach provide promising results. Evidence on the relationship of NREM sleep alterations with neurodegenerative processes in iRBD, as well as longitudinal changes, are scarce. We discuss the main methodological limitations, highlighting possible future directions.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Humanos , Electroencefalografía , Sueño/fisiología , Electrofisiología
20.
Elife ; 112022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972073

RESUMEN

Sleep and plasticity are highly interrelated, as sleep slow oscillations and sleep spindles are associated with consolidation of Hebbian-based processes. However, in adult humans, visual cortical plasticity is mainly sustained by homeostatic mechanisms, for which the role of sleep is still largely unknown. Here, we demonstrate that non-REM sleep stabilizes homeostatic plasticity of ocular dominance induced in adult humans by short-term monocular deprivation: the counterintuitive and otherwise transient boost of the deprived eye was preserved at the morning awakening (>6 hr after deprivation). Subjects exhibiting a stronger boost of the deprived eye after sleep had increased sleep spindle density in frontopolar electrodes, suggesting the involvement of distributed processes. Crucially, the individual susceptibility to visual homeostatic plasticity soon after deprivation correlated with the changes in sleep slow oscillations and spindle power in occipital sites, consistent with a modulation in early occipital visual cortex.


Asunto(s)
Predominio Ocular , Corteza Visual , Adulto , Electroencefalografía , Humanos , Plasticidad Neuronal , Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA