Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bull Math Biol ; 84(6): 64, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538265

RESUMEN

The present work studies models of oncolytic virotherapy without space variable in which virus replication occurs at a faster time scale than tumor growth. We address the questions of the modeling of virus injection in this slow-fast system and of the optimal timing for different treatment strategies. To this aim, we first derive the asymptotic of a three-species slow-fast model and obtain a two-species dynamical system, where the variables are tumor cells and infected tumor cells. We fully characterize the behavior of this system depending on the various biological parameters. In the second part, we address the modeling of virus injection and its expression in the two-species system, where the amount of virus does not appear explicitly. We prove that the injection can be described by an instantaneous jump in the phase plane, where a certain amount of tumors cells are transformed instantly into infected tumor cells. This description allows discussing qualitatively the timing of different injections in the frame of successive treatment strategies. This work is illustrated by numerical simulations. The timing and amount of injected virus may have counterintuitive optimal values; nevertheless, the understanding is clear from the phase space analysis.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Conceptos Matemáticos , Modelos Biológicos , Neoplasias/patología , Replicación Viral
2.
J Comput Neurosci ; 50(1): 33-49, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35031915

RESUMEN

The majority of seizures recorded in humans and experimental animal models can be described by a generic phenomenological mathematical model, the Epileptor. In this model, seizure-like events (SLEs) are driven by a slow variable and occur via saddle node (SN) and homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs at the single cell level using a biophysically relevant neuron model including a slow/fast system of four equations. The two equations for the slow subsystem describe ion concentration variations and the two equations of the fast subsystem delineate the electrophysiological activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with SN/homoclinic bifurcations can readily occur at the single cell level when extracellular K+ reaches a critical value. In patients and experimental models, seizures can also evolve into sustained ictal activity (SIA) and depolarization block (DB), activities which are also parts of the dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the model to values found during experimental status epilepticus and DB, we show that SIA and DB can also occur at the single cell level. Thus, seizures, SIA, and DB, which have been first identified as network events, can exist in a unified framework of a biophysical model at the single neuron level and exhibit similar dynamics as observed in the Epileptor.Author Summary: Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have been characterized in patients in experimental models at both macroscopic and microscopic scales using electrophysiological recordings. Experimental works allowed the establishment of a detailed taxonomy of seizures, which can be described by mathematical models. We can distinguish two main types of models. Phenomenological (generic) models have few parameters and variables and permit detailed dynamical studies often capturing a majority of activities observed in experimental conditions. But they also have abstract parameters, making biological interpretation difficult. Biophysical models, on the other hand, use a large number of variables and parameters due to the complexity of the biological systems they represent. Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the present work, we integrate both approaches and reduce a detailed biophysical model to sufficiently low-dimensional equations, and thus maintaining the advantages of a generic model. We propose, at the single cell level, a unified framework of different pathological activities that are seizures, depolarization block, and sustained ictal activity.


Asunto(s)
Epilepsia , Modelos Neurológicos , Animales , Fenómenos Electrofisiológicos , Humanos , Neuronas/fisiología , Convulsiones
3.
J Theor Biol ; 526: 110796, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34090903

RESUMEN

During the outbreak of emerging infectious diseases, information dissemination dynamics significantly affects the individuals' psychological and behavioral changes, and consequently influences on the disease transmission. To investigate the interaction of disease transmission and information dissemination dynamics, we proposed a multi-scale model which explicitly models both the disease transmission with saturated recovery rate and information transmission to evaluate the effect of information transmission on dynamic behaviors. Considering time variation between information dissemination, epidemiological and demographic processes, we obtained a slow-fast system by reasonably introducing a sufficiently small quantity. We carefully examined the dynamics of proposed system, including existence and stability of possible equilibria and existence of backward bifurcation, by using the fast-slow theory and directly investigating the full system. We then compared the dynamics of the proposed system and the essential thresholds based on two methods, and obtained the similarity between the basic dynamical behaviors of the slow system and that of the full system. Finally, we parameterized the proposed model on the basis of the COVID-19 case data in mainland China and data related to news items, and estimated the basic reproduction number to be 3.25. Numerical analysis suggested that information transmission about COVID-19 pandemic caused by media coverage can reduce the peak size, which mitigates the transmission dynamics during the early stage of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Pandemias , China , Humanos , Difusión de la Información , SARS-CoV-2
4.
Philos Trans A Math Phys Eng Sci ; 378(2171): 20190253, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32279634

RESUMEN

We study the effects of noise and diffusion in an excitable slow-fast population system of the Leslie-Gower type. The phenomenon of noise-induced excitement is investigated in the zone of stable equilibria near the Andronov-Hopf bifurcation with the Canard explosion. The stochastic generation of mixed-mode oscillations is studied by numerical simulation and stochastic sensitivity analysis. Effects of the diffusion are considered for the spatially distributed variant of this slow-fast population model. The phenomenon of the diffusion-induced generation of spatial patterns-attractors in the Turing instability zone is demonstrated. The multistability and variety of transient processes of the pattern formation are discussed. This article is part of the theme issue 'Patterns in soft and biological matters'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA