Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genetics ; 222(1)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35894940

RESUMEN

To understand the process by which new protein functions emerge, we examined how the yeast heterochromatin protein Sir3 arose through gene duplication from the conserved DNA replication protein Orc1. Orc1 is a subunit of the origin recognition complex (ORC), which marks origins of DNA replication. In Saccharomyces cerevisiae, Orc1 also promotes heterochromatin assembly by recruiting the structural proteins Sir1-4 to silencer DNA. In contrast, the paralog of Orc1, Sir3, is a nucleosome-binding protein that spreads across heterochromatic loci in conjunction with other Sir proteins. We previously found that a nonduplicated Orc1 from the yeast Kluyveromyces lactis behaved like ScSir3 but did not have a silencer-binding function like ScOrc1. Moreover, K. lactis lacks Sir1, the protein that interacts directly with ScOrc1 at the silencer. Here, we examined whether the emergence of Sir1 coincided with Orc1 acting as a silencer-binding protein. In the nonduplicated species Torulaspora delbrueckii, which has an ortholog of Sir1 (TdKos3), we found that TdOrc1 spreads across heterochromatic loci independently of ORC, as ScSir3 and KlOrc1 do. This spreading is dependent on the nucleosome binding BAH domain of Orc1 and on Sir2 and Kos3. However, TdOrc1 does not have a silencer-binding function: T. delbrueckii silencers do not require ORC-binding sites to function, and Orc1 and Kos3 do not appear to interact. Instead, Orc1 and Kos3 both spread across heterochromatic loci with other Sir proteins. Thus, Orc1 and Sir1/Kos3 originally had different roles in heterochromatin formation than they do now in S. cerevisiae.


Asunto(s)
Torulaspora , Proteínas Portadoras/genética , Replicación del ADN , Heterocromatina/genética , Heterocromatina/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Torulaspora/genética , Torulaspora/metabolismo
2.
EMBO J ; 41(1): e108813, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34817085

RESUMEN

Heterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in gene expression regulation and maintenance of genome stability. How heterochromatin proteins regulate DNA repair remains poorly described. In the yeast Saccharomyces cerevisiae, the silent information regulator (SIR) complex assembles heterochromatin-like chromatin at sub-telomeric chromosomal regions. SIR-mediated repressive chromatin limits DNA double-strand break (DSB) resection, thus protecting damaged chromosome ends during homologous recombination (HR). As resection initiation represents the crossroads between repair by non-homologous end joining (NHEJ) or HR, we asked whether SIR-mediated heterochromatin regulates NHEJ. We show that SIRs promote NHEJ through two pathways, one depending on repressive chromatin assembly, and the other relying on Sir3 in a manner that is independent of its heterochromatin-promoting function. Via physical interaction with the Sae2 protein, Sir3 impairs Sae2-dependent functions of the MRX (Mre11-Rad50-Xrs2) complex, thereby limiting Mre11-mediated resection, delaying MRX removal from DSB ends, and promoting NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Endonucleasas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Endonucleasas/química , Mutación Puntual/genética , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/metabolismo
3.
Genes (Basel) ; 10(8)2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366171

RESUMEN

O-acetyl-ADP-ribose (AAR) is a metabolic small molecule relevant in epigenetics that is generated by NAD-dependent histone deacetylases, such as Sir2. The formation of silent heterochromatin in yeast requires histone deacetylation by Sir2, structural rearrangement of SIR complexes, spreading of SIR complexes along the chromatin, and additional maturation processing. AAR affects the interactions of the SIR-nucleosome in vitro and enhances the chromatin epigenetic silencing effect in vivo. In this study, using isothermal titration calorimetry (ITC) and dot blotting methods, we showed the direct interaction of AAR with Sir3. Furthermore, through chromatin immunoprecipitation (ChIP)-on-chip and chromatin affinity purification (ChAP)-on chip assays, we discovered that AAR is capable of increasing the extended spreading of Sir3 along telomeres, but not Sir2. In addition, the findings of a quantitative real-time polymerase chain reaction (qRT-PCR) and examinations of an in vitro assembly system of SIR-nucleosome heterochromatin filament were consistent with these results. This study provides evidence indicating another important effect of AAR in vivo. AAR may play a specific modulating role in the formation of silent SIR-nucleosome heterochromatin in yeast.


Asunto(s)
Cromatina/genética , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Código de Histonas , Unión Proteica , Saccharomyces cerevisiae
4.
Arch Biochem Biophys ; 671: 167-174, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31295433

RESUMEN

In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.


Asunto(s)
Heterocromatina/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Epigénesis Genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo
5.
Fungal Genet Biol ; 118: 21-31, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29857197

RESUMEN

An important virulence factor for the fungal pathogen Candida glabrata is the ability to adhere to the host cells, which is mediated by the expression of adhesins. Epa1 is responsible for ∼95% of the in vitro adherence to epithelial cells and is the founding member of the Epa family of adhesins. The majority of EPA genes are localized close to different telomeres, which causes transcriptional repression due to subtelomeric silencing. In C. glabrata there are three Sir proteins (Sir2, Sir3 and Sir4) that are essential for subtelomeric silencing. Among a collection of 79 clinical isolates, some display a hyperadherent phenotype to epithelial cells compared to our standard laboratory strain, BG14. These isolates also express several subtelomeric EPA genes simultaneously. We cloned the SIR2, SIR3 and SIR4 genes from the hyperadherent isolates and from the BG14 and the sequenced strain CBS138 in a replicative vector to complement null mutants in each of these genes in the BG14 background. All the SIR2 and SIR4 alleles tested from selected hyper-adherent isolates were functional and efficient to silence a URA3 reporter gene inserted in a subtelomeric region. The SIR3 alleles from these isolates were also functional, except the allele from isolate MC2 (sir3-MC2), which was not functional to silence the reporter and did not complement the hyperadherent phenotype of the BG14 sir3Δ. Consistently, sir3-MC2 allele is recessive to the SIR3 allele from BG14. Sir3 and Sir4 alleles from the hyperadherent isolates contain several polymorphisms and two of them are present in all the hyperadherent isolates analyzed. Instead, the Sir3 and Sir4 alleles from the BG14 and another non-adherent isolate do not display these polymorphisms and are identical to each other. The particular combination of polymorphisms in sir3-MC2 and in SIR4-MC2 could explain in part the hyperadherent phenotype displayed by this isolate.


Asunto(s)
Candida glabrata/genética , Candidiasis/genética , Proteínas Fúngicas/genética , Lectinas/genética , Candida glabrata/patogenicidad , Candidiasis/microbiología , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Complejo Silenciador Inducido por ARN/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/clasificación , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/genética
6.
Mol Cell ; 67(4): 594-607.e4, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28735899

RESUMEN

Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Células Madre Embrionarias/enzimología , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN , Eucromatina/genética , Eucromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genotipo , Heterocromatina/genética , Heterocromatina/metabolismo , Fenotipo , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID , Factores de Transcripción/genética , Transfección
7.
G3 (Bethesda) ; 7(6): 1899-1911, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450371

RESUMEN

Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth-starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population's fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients (ECM21, RSP5, MSN1, SIR4, and IRA2) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1 Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures.


Asunto(s)
Adaptación Biológica , Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Endocitosis , Evolución Molecular , Silenciador del Gen , Interacción Gen-Ambiente , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas , Mutación , Fenotipo , Fase de Descanso del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
8.
Elife ; 52016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27835568

RESUMEN

Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.


Asunto(s)
Heterocromatina/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
9.
Elife ; 42015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25730674

RESUMEN

Silent chromatin in budding yeast is propagated from one generation to the next, even though 'silenced' genes are occasionally expressed.


Asunto(s)
Cromatina/genética , Silenciador del Gen , Saccharomyces cerevisiae/genética , Genes Fúngicos
10.
Elife ; 4: e05007, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25581000

RESUMEN

Heterochromatin exerts a heritable form of eukaryotic gene repression and contributes to chromosome segregation fidelity and genome stability. However, to date there has been no quantitative evaluation of the stability of heterochromatic gene repression. We designed a genetic strategy to capture transient losses of gene silencing in Saccharomyces as permanent, heritable changes in genotype and phenotype. This approach revealed rare transcription within heterochromatin that occurred in approximately 1/1000 cell divisions. In concordance with multiple lines of evidence suggesting these events were rare and transient, single-molecule RNA FISH showed that transcription was limited. The ability to monitor fluctuations in heterochromatic repression uncovered previously unappreciated roles for Sir1, a silencing establishment factor, in the maintenance and/or inheritance of silencing. In addition, we identified the sirtuin Hst3 and its histone target as contributors to the stability of the silenced state. These approaches revealed dynamics of a heterochromatin function that have been heretofore inaccessible.


Asunto(s)
Heterocromatina/metabolismo , Patrón de Herencia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Diploidia , Eliminación de Gen , Silenciador del Gen , Genes del Tipo Sexual de los Hongos , Proteínas Fluorescentes Verdes/metabolismo , Hemicigoto , Histonas/metabolismo , Imagenología Tridimensional , Hibridación Fluorescente in Situ , Integrasas/metabolismo , Proteínas Luminiscentes/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuinas/genética , Transcripción Genética , Proteína Fluorescente Roja
11.
Proc Natl Acad Sci U S A ; 111(50): 17827-32, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453095

RESUMEN

Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Oligonucleótidos/genética , Reacción en Cadena de la Polimerasa , Colorantes de Rosanilina , Xenopus laevis
12.
Mol Biochem Parasitol ; 191(1): 28-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24018145

RESUMEN

Telomere position effect efficiently controls silencing of subtelomeric var genes, which are involved in antigenic variation in human malaria parasite Plasmodium falciparum. Although, PfOrc1 has been found to be associated with PfSir2 in the silencing complex, its function in telomere silencing remained uncertain especially due to an apparent lack of BAH domain at its amino-terminal region. Here we report that PfOrc1 possesses a Sir3/Orc1 like silencing activity. Using yeast as a surrogate organism we have shown that PfOrc1 could complement yeast Sir3 activity during telomere silencing in a Sir2 dependent manner. By constructing a series of chimera between PfOrc1 and ScSir3 we have observed that the amino-terminal domain of PfOrc1 harbors silencing activity similar to that present in the amino-terminal domain of ScSir3. We further generated several amino-terminal deletion mutants to dissect out such silencing activity and found that the first seventy amino acids at the amino-terminal domain are dispensable for its activity. Thus our results strongly supports that PfOrc1 may have a role in telomere silencing in this parasite. This finding will help to decipher the mechanism of telomere position effect in P. falciparum.


Asunto(s)
Complejo de Reconocimiento del Origen/genética , Plasmodium falciparum/enzimología , Saccharomyces cerevisiae/enzimología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/deficiencia , Prueba de Complementación Genética , Complejo de Reconocimiento del Origen/metabolismo , Plasmodium falciparum/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/metabolismo
13.
Gene ; 527(1): 10-25, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23791651

RESUMEN

Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression, referred to as heterochromatin or "silent" chromatin. Constitutively silent chromatin is found in subtelomeric domains in a number of species, ranging from yeast to man. In addition, chromatin-dependent repression of mating type loci occurs in both budding and fission yeasts, to enable sexual reproduction. The silencing of chromatin in budding yeast is characterized by an assembly of Silent Information Regulatory (SIR) proteins-Sir2, Sir3 and Sir4-with unmodified nucleosomes. Silencing requires the lysine deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions among the SIR proteins, to generate the Sir2-3-4 or SIR complex. Results from recent structural and reconstitution studies suggest an updated model for the ordered assembly and organization of SIR-dependent silent chromatin in yeast. Moreover, studies of subtelomeric gene expression reveal the importance of subtelomeric silent chromatin in the regulation of genes other than the silent mating type loci. This review covers recent advances in this field.


Asunto(s)
Proteínas Fúngicas/metabolismo , Nucleosomas/enzimología , Sirtuinas/metabolismo , Levaduras/enzimología , Animales , Cromatina/enzimología , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Humanos , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Levaduras/genética
14.
Comput Struct Biotechnol J ; 7: e201304001, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24688731

RESUMEN

In budding yeast, the Sir2, Sir3 and Sir4 proteins form SIR complexes, required for the assembly of silent heterochromatin domains, and which mediate transcription silencing at the telomeres as well as at silent mating type loci. In this study, under fluorescence microscopy, we found most Sir3-GFP expressions in the logarithmic phase cells appeared as multiple punctations as expected. However, some differences in the distribution of fluorescent signals were detected in the diauxic~early stationary phase cells. To clarify these, we then used ChIP on chip assays to investigate the genome-wide localization of Sir3. In general, Sir3 binds to all 32 telomere proximal regions, the silent mating type loci and also binds to the rDNA region. However, the genome-wide localization patterns of Sir3 are different between these two distinct growth phases. We also confirmed that Sir3 binds to a recently identified secondary binding site, PAU genes, and further identified 349 Sir3-associated cluster regions. These results provide additional support in roles for Sir3 in the modulation of gene expression during physical conditions such as diauxic~early stationary phase growing. Moreover, they imply that Sir3 may be not only involved in the formation of conventional silent heterochromatin, but also able to associate with some other chromatin regions involved in epigenetic regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA