Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
ACS Synth Biol ; 13(8): 2515-2532, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39109796

RESUMEN

Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.


Asunto(s)
Genoma Bacteriano , Plásmidos , Replicón , Sinorhizobium meliloti , Simbiosis , Sinorhizobium meliloti/genética , Replicón/genética , Genoma Bacteriano/genética , Plásmidos/genética , Simbiosis/genética , Ingeniería Genética/métodos , Fijación del Nitrógeno/genética , Origen de Réplica/genética , Proteínas Bacterianas/genética , Replicación del ADN/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-39037439

RESUMEN

The species Rhizobium indigoferae and Sinorhizobium kummerowiae were isolated from legume nodules and the 16S rRNA sequences of their respective type strains, CCBAU 71042T and CCBAU 71714T, were highly divergent from those of the other species of the genera Rhizobium and Sinorhizobium, respectively. However, the 16S rRNA gene sequences obtained for strains CCBAU 71042T and CCBAU 71714T several years after description, were different from the original ones, showing 100 % similarity to the type strains of Rhizobium leguminosarum and Sinorhizobium meliloti, respectively. Phylogenetic analyses of two housekeeping genes, recA and atpD, confirmed the high phylogenetic closeness of strains CCBAU 71042T and CCBAU 71714T to the respective type strains of R. leguminosarum and S. meliloti. In the present work, we compared the genomes of the type strains of R. indigoferae and S. kummerowiae available in several culture collections with those of the respective type strains of R. leguminosarum and S. meliloti, some of them obtained in this study. The calculated average nucleotide identity-blast and digital DNA-DNA hybridization values in both cases were higher than those recommended for species differentiation, supporting the proposal for the reclassification of the type strains of R. indigoferae and S. kummerowiae into the species R. leguminosarum and S. meliloti, respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Rhizobium leguminosarum , Análisis de Secuencia de ADN , Sinorhizobium meliloti , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/clasificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/clasificación , Genoma Bacteriano , Rhizobium/clasificación , Rhizobium/genética , Rhizobium/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Genes Esenciales , Genes Bacterianos , Hibridación de Ácido Nucleico
3.
Microbiol Spectr ; 12(8): e0021924, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39012118

RESUMEN

Interactions between photosynthetic microalgae and bacteria impact the physiology of both partners, which influence the fitness and ecological trajectories of each partner in an environmental context-dependent manner. Thermal tolerance of Chlamydomonas reinhardtii can be enhanced through a mutualistic interaction with vitamin B12 (cobalamin)-producing Sinorhizobium meliloti. Here, we used label-free quantitative proteomics to reveal the metabolic networks altered by the interaction under normal and high temperatures. We created a scenario where the growth of Sinorhizobium requires carbon provided by Chlamydomonas for growth in co-cultures, and survival of Chlamydomonas under high temperatures relies on cobalamin and possibly other metabolites produced by Sinorhizobium. Differential abundance analysis identified proteins produced by each partner in co-cultures compared to mono-cultures at each temperature. Proteins involved in cobalamin production by Sinorhizobium increased in the presence of Chlamydomonas under elevated temperatures, whereas in Chlamydomonas, there was an increase in cobalamin-dependent methionine synthase and certain proteins associated with methylation reactions. Co-cultivation and heat stress strongly modulated the central metabolism of both partners as well as various transporters that could facilitate nutrient cross-utilization. Co-cultivation modulated expression of various components of two- or one-component signal transduction systems, transcriptional activators/regulators, or sigma factors, suggesting complex regulatory networks modulate the interaction in a temperature-dependent manner. Notably, heat and general stress-response and antioxidant proteins were upregulated in co-cultures, suggesting that the interaction is inherently stressful to each partner despite the benefits of mutualism. Our results shed insight into the metabolic tradeoffs required for mutualism and how metabolic networks are modulated by elevated temperature. IMPORTANCE: Photosynthetic microalgae are key primary producers in aquatic ecosystems, playing an important role in the global carbon cycle. Nearly every alga lives in association with a diverse community of microorganisms that influence each other and their metabolic activities or survival. One chemical produced by bacteria that influence algae is vitamin B12, an enzyme cofactor used for a variety of metabolic functions. The alga Chlamydomonas reinhardtii benefits from vitamin B12 produced by Sinorhizobium meliloti by producing the amino acid methionine under high temperatures which are required for Chlamydomonas thermotolerance. Yet, our understanding of this interaction under normal and stressful temperatures is poor. Here, we used quantitative proteomics to identify differentially expressed proteins to reveal metabolic adjustments made by Chlamydomonas and Sinorhizobium that could facilitate this mutualism. These findings will enhance our understanding of how photosynthetic algae and their associated microbiomes will respond as global temperatures increase.


Asunto(s)
Chlamydomonas reinhardtii , Proteómica , Sinorhizobium meliloti , Simbiosis , Vitamina B 12 , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Vitamina B 12/metabolismo , Termotolerancia , Calor , Redes y Vías Metabólicas/genética
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38696719

RESUMEN

Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation. However, competition for iron plays an important role in the outcome of predatory interactions. Using combinations of predator and prey mutants (nonproducers and overproducers of siderophores), we have investigated the importance of competition for iron in predation. The results demonstrate that the competitor that, via the production of siderophores, obtains sufficient iron for growth and depletes metal availability for the opponent will prevail in the interaction. Consequently, iron fluctuations in soils may modify the composition of microbial communities by altering the activity of myxobacterial predators. In addition, siderophore overproduction during predation can alter soil properties, affecting the productivity and sustainability of agricultural operations.


Asunto(s)
Hierro , Myxococcus xanthus , Sideróforos , Sinorhizobium meliloti , Sideróforos/metabolismo , Hierro/metabolismo , Myxococcus xanthus/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/fisiología , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/genética , Microbiología del Suelo , Interacciones Microbianas , Rizosfera , Simbiosis
5.
J Agric Food Chem ; 72(15): 8650-8663, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564678

RESUMEN

Plant growth-promoting rhizobacteria have been shown to enhance plant tolerance to drought stress through various mechanisms. However, there is limited research on improving drought resistance in alfalfa by genetically modifying PGPR to produce increased levels of cytokinins. Herein, we employed synthetic biology approaches to engineer two novel strains of Sinorhizobium meliloti capable of overproducing trans-Zeatin and investigated their potential in enhancing drought tolerance in alfalfa. Our results demonstrate that alfalfa plants inoculated with these engineered S. meliloti strains exhibited reduced wilting and yellowing while maintaining higher relative water content under drought conditions. The engineered S. meliloti-induced tZ activated the activity of antioxidant enzymes and the accumulation of osmolytes. Additionally, the increased endogenous tZ content in plants alleviated the impact of drought stress on the alfalfa photosynthetic rate. However, under nondrought conditions, inoculation with the engineered S. meliloti strains had no significant effect on alfalfa biomass and nodule formation.


Asunto(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Zeatina , Medicago sativa , Sequías , Antioxidantes
6.
bioRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38617242

RESUMEN

Biomolecular condensates, such as the nucleoli or P-bodies, are non-membrane-bound assemblies of proteins and nucleic acids that facilitate specific cellular processes. Like eukaryotic P-bodies, the recently discovered bacterial ribonucleoprotein bodies (BR-bodies) organize the mRNA decay machinery, yet the similarities in molecular and cellular functions across species have been poorly explored. Here, we examine the functions of BR-bodies in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, which colonizes the roots of compatible legume plants. Assembly of BR-bodies into visible foci in S. meliloti cells requires the C-terminal intrinsically disordered region (IDR) of RNase E, and foci fusion is readily observed in vivo, suggesting they are liquid-like condensates that form via mRNA sequestration. Using Rif-seq to measure mRNA lifetimes, we found a global slowdown in mRNA decay in a mutant deficient in BR-bodies, indicating that compartmentalization of the degradation machinery promotes efficient mRNA turnover. While BR-bodies are constitutively present during exponential growth, the abundance of BR-bodies increases upon cell stress, whereby they promote stress resistance. Finally, using Medicago truncatula as host, we show that BR-bodies enhance competitiveness during colonization and appear to be required for effective symbiosis, as mutants without BR-bodies failed to stimulate plant growth. These results suggest that BR-bodies provide a fitness advantage for bacteria during infection, perhaps by enabling better resistance against the host immune response.

7.
Arch Microbiol ; 206(4): 147, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462552

RESUMEN

Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.


Asunto(s)
Medicago truncatula , Rhizobium , Péptido Hidrolasas/genética , Rhizobium/genética , Rhizobium/metabolismo , Simbiosis , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Ecosistema , Péptidos/metabolismo , Verduras , Nitrógeno , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/microbiología
8.
Microbiol Resour Announc ; 13(3): e0123023, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38385668

RESUMEN

We report the complete genome sequences of two bacteriophages, Aussie and StopSmel, isolated from soil using the host Sinorhizobium meliloti NRRL L-50. The genomes are similar in length and gene content and share 76% nucleotide identity. Comparative analysis of Aussie and StopSmel identified core functional modules associated with Mu-like bacteriophages.

9.
Methods Mol Biol ; 2751: 179-203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265717

RESUMEN

Computational comparative genomics and, later, high-throughput transcriptome profiling (RNAseq) have uncovered a plethora of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. A large fraction of sRNAs are differentially regulated in response to different biotic and abiotic stimuli and have the ability to fine-tune posttranscriptional reprogramming of gene expression through protein-assisted antisense interactions with trans-encoded target mRNAs. However, this level of gene regulation is still understudied in most non-model bacteria. Here, we compile experimental methods to detect expression, determine 5'/3'-ends, assess transcriptional regulation, generate mutants, and validate candidate target mRNAs of trans-acting sRNAs (trans-sRNAs) identified in the nitrogen-fixing α-rhizobium Sinorhizobium meliloti. The workflow, molecular tools, and methods are suited to investigate the function of newly identified base-pairing trans-sRNAs in phylogenetically related α-rhizobia.


Asunto(s)
Fabaceae , ARN Pequeño no Traducido , Sinorhizobium meliloti , Flujo de Trabajo , Verduras , Bacterias , ARN Mensajero
10.
Methods Mol Biol ; 2741: 363-380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217663

RESUMEN

The activity mechanism and function of bacterial base-pairing small non-coding RNA regulators (sRNAs) are largely shaped by their main interacting cellular partners, i.e., proteins and mRNAs. We describe here an MS2 affinity chromatography-based procedure adapted to unravel the sRNA interactome in nitrogen-fixing legume endosymbiotic bacteria. The method consists of tagging of the bait sRNA at its 5'-end with the MS2 aptamer followed by pulse overexpression and immobilization of the chimeric transcript from cell lysates by an MS2-MBP fusion protein conjugated to an amylose resin. The sRNA-binding proteins and target mRNAs are further profiled by mass spectrometry and RNAseq, respectively.


Asunto(s)
Bacterias Fijadoras de Nitrógeno , ARN Pequeño no Traducido , Rhizobium , ARN Pequeño no Traducido/genética , Rhizobium/genética , Rhizobium/metabolismo , Nitrógeno/metabolismo , Bacterias/genética , Bacterias Fijadoras de Nitrógeno/genética , Cromatografía de Afinidad/métodos , ARN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica
11.
Microbiol Res ; 280: 127568, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118306

RESUMEN

Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.


Asunto(s)
Nanopartículas , Selenio , Sinorhizobium meliloti , Ácido Selenioso/metabolismo , Medicago sativa , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Biotransformación
12.
Plants (Basel) ; 12(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38068608

RESUMEN

Agricultural soil salinization, which is often combined with heavy-metal contamination, is an ever-growing problem in the current era of global change. Legumes have a high potential for nitrogen fixation and are ideal crops for the reclamation of degraded soils. Alfalfa (Medicago sativa) is a valuable forage crop cultivated worldwide. Alfalfa plants fertilized with nitrogen or inoculated with a salt- and cadmium-tolerant Sinorhizobium meliloti strain were subjected to combined NaCl and CdCl2 stresses. Our results showed that inoculated plants presented higher aerial biomass than nitrogen-fertilized plants when they were exposed to salinity and cadmium together. To assess the mechanisms involved in the plant response to the combined stresses, superoxide dismutase and catalase antioxidant enzymatic activities were determined. Both increased upon stress; however, the increase in catalase activity was significantly less marked for inoculated plants, suggesting that other tolerance mechanisms might be active. Cd accumulation was lower in inoculated plants than in fertilized plants, which appears to imply that inoculation somehow prevented cadmium uptake by the plant roots. Expression analyses of several involved genes suggested that inoculation stimulated the biosynthesis of proline, phytochelatins, and homophytochelatins, together indicating that inoculated plants might be better suited to withstand combined salinity and cadmium stress effects.

13.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003367

RESUMEN

Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.


Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Sinorhizobium meliloti/genética , Simbiosis/genética , RNA-Seq , Mutación , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología
14.
mBio ; : e0200323, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37850753

RESUMEN

The nitrogen (N) status transduced via the NtrBC two-component system is a major signaling cue in the root nodule endosymbiosis of diazotrophic rhizobia with legumes. NtrBC is upregulated in the N-limiting rhizosphere environment at the onset of nodulation but silenced in nodules to favor the assimilation of the fixed N into plant biomass. We reported that the trans-acting sRNA NfeR1 (Nodule Formation Efficiency RNA) broadly influences the symbiotic performance of the α-rhizobium Sinorhizobium meliloti. Here, we show that NfeR1 is indeed an N-responsive sRNA that fine-tunes NtrBC output during the symbiotic transition. Biochemical and genetic approaches unveiled that NtrC and the LysR-type symbiotic regulator LsrB bind at distinct nearby sites in the NfeR1 promoter, acting antagonistically as repressor and activator of transcription, respectively. This complex transcriptional control specifies peak NfeR1 steady-state levels in N-starved and endosymbiotic bacteria. Furthermore, NfeR1 base pairs the translation initiation region of the histidine kinase coding mRNA ntrB, causing a decrease in both NtrB and NtrC abundance as assessed by double-plasmid genetic assays. In the context of endogenous regulation, NfeR1-mediated ntrBC silencing most likely amends the effective strength of the known operon autorepression exerted by NtrC. Accordingly, a lack of NfeR1 shifts the wild-type NtrBC output, restraining the fitness of free-living rhizobia under N stress and plant growth upon nodulation. The mixed NtrBC-NfeR1 double-negative feedback loop is thus an unprecedented adaptive network motif that helps α-rhizobia adjust N metabolism to the demands of an efficient symbiosis with legume plants. IMPORTANCE Root nodule endosymbioses between diazotrophic rhizobia and legumes provide the largest input of combined N to the biosphere, thus representing an alternative to harmful chemical fertilizers for sustainable crop production. Rhizobia have evolved intricate strategies to coordinate N assimilation for their own benefit with N2 fixation to sustain plant growth. The rhizobial N status is transduced by the NtrBC two-component system, the seemingly ubiquitous form of N signal transduction in Proteobacteria. Here, we show that the regulatory sRNA NfeR1 (nodule formation efficiency RNA) of the alfalfa symbiont Sinorhizobium meliloti is transcribed from a complex promoter repressed by NtrC in a N-dependent manner and feedback silences ntrBC by complementary base-pairing. These findings unveil a more prominent role of NtrC as a transcriptional repressor than hitherto anticipated and a novel RNA-based mechanism for NtrBC regulation. The NtrBC-NfeR1 double-negative feedback loop accurately rewires symbiotic S. meliloti N metabolism and is likely conserved in α-rhizobia.

15.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686117

RESUMEN

Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL-). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.


Asunto(s)
Brassicaceae , Fabaceae , Verduras , Flavinas , Proteómica , Lactuca , Plantones , Bacterias
16.
BMC Microbiol ; 23(1): 236, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633907

RESUMEN

BACKGROUND: Adenylate cyclases (ACs) generate the second messenger cyclic AMP (cAMP), which is found in all domains of life and is involved in the regulation of various cell physiological and metabolic processes. In the plant symbiotic bacterium Sinorhizobium meliloti, synthesis of cAMP by the membrane-bound AC CyaC responds to the redox state of the respiratory chain and the respiratory quinones. However, nothing is known about the signaling cascade that is initiated by cAMP produced by CyaC. RESULTS: Here, the CRP-like transcriptional regulator Clr and the TetR-like regulator CycR (TR01819 protein) were identified to interact with CyaC using the bacterial two-hybrid system (BACTH), co-sedimentation assays, and surface plasmon resonance spectroscopy. Interaction of CycR with Clr, and of CyaC with Clr requires the presence of cAMP and of ATP, respectively, whereas that of CyaC with CycR was independent of the nucleotides. CONCLUSION: The data implicate a ternary CyaC×CycR×cAMP-Clr complex, functioning as a specific signaling cascade which is formed after activation of CyaC and synthesis of cAMP. cAMP-Clr is thought to work in complex with CycR to regulate a subset of genes of the cAMP-Clr regulon in S. meliloti.


Asunto(s)
Adenilil Ciclasas , Sinorhizobium meliloti , Adenilil Ciclasas/genética , AMP Cíclico , Sinorhizobium meliloti/genética , Transducción de Señal , Sistemas de Mensajero Secundario
17.
Front Microbiol ; 14: 1213659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405170

RESUMEN

Bacterial predation impacts microbial community structures, which can have both positive and negative effects on plant and animal health and on environmental sustainability. Myxococcus xanthus is an epibiotic soil predator with a broad range of prey, including Sinorhizobium meliloti, which establishes nitrogen-fixing symbiosis with legumes. During the M. xanthus-S. meliloti interaction, the predator must adapt its transcriptome to kill and lyse the target (predatosome), and the prey must orchestrate a transcriptional response (defensome) to protect itself against the biotic stress caused by the predatory attack. Here, we describe the transcriptional changes taking place in S. meliloti in response to myxobacterial predation. The results indicate that the predator induces massive changes in the prey transcriptome with up-regulation of protein synthesis and secretion, energy generation, and fatty acid (FA) synthesis, while down-regulating genes required for FA degradation and carbohydrate transport and metabolism. The reconstruction of up-regulated pathways suggests that S. meliloti modifies the cell envelop by increasing the production of different surface polysaccharides (SPSs) and membrane lipids. Besides the barrier role of SPSs, additional mechanisms involving the activity of efflux pumps and the peptide uptake transporter BacA, together with the production of H2O2 and formaldehyde have been unveiled. Also, the induction of the iron-uptake machinery in both predator and prey reflects a strong competition for this metal. With this research we complete the characterization of the complex transcriptional changes that occur during the M. xanthus-S. meliloti interaction, which can impact the establishment of beneficial symbiosis with legumes.

18.
Microlife ; 4: uqad012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223733

RESUMEN

The soil-dwelling plant symbiont Sinorhizobium meliloti is a major model organism of Alphaproteobacteria. Despite numerous detailed OMICS studies, information about small open reading frame (sORF)-encoded proteins (SEPs) is largely missing, because sORFs are poorly annotated and SEPs are hard to detect experimentally. However, given that SEPs can fulfill important functions, identification of translated sORFs is critical for analyzing their roles in bacterial physiology. Ribosome profiling (Ribo-seq) can detect translated sORFs with high sensitivity, but is not yet routinely applied to bacteria because it must be adapted for each species. Here, we established a Ribo-seq procedure for S. meliloti 2011 based on RNase I digestion and detected translation for 60% of the annotated coding sequences during growth in minimal medium. Using ORF prediction tools based on Ribo-seq data, subsequent filtering, and manual curation, the translation of 37 non-annotated sORFs with ≤ 70 amino acids was predicted with confidence. The Ribo-seq data were supplemented by mass spectrometry (MS) analyses from three sample preparation approaches and two integrated proteogenomic search database (iPtgxDB) types. Searches against standard and 20-fold smaller Ribo-seq data-informed custom iPtgxDBs confirmed 47 annotated SEPs and identified 11 additional novel SEPs. Epitope tagging and Western blot analysis confirmed the translation of 15 out of 20 SEPs selected from the translatome map. Overall, by combining MS and Ribo-seq approaches, the small proteome of S. meliloti was substantially expanded by 48 novel SEPs. Several of them are part of predicted operons and/or are conserved from Rhizobiaceae to Bacteria, suggesting important physiological functions.

19.
J Proteome Res ; 22(6): 1682-1694, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37017314

RESUMEN

To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.


Asunto(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteómica , Proteoma/genética , Proteoma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Simbiosis/genética
20.
Appl Environ Microbiol ; 89(3): e0190122, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36853042

RESUMEN

Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.


Asunto(s)
Sinorhizobium meliloti , Simportadores , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Hemina/metabolismo , Hierro/metabolismo , Homeostasis , Cobalto/metabolismo , Hemo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA