Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 341: 140012, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652243

RESUMEN

In the field of electrocatalysis, single-atomic-layer tungsten, copper, and cobalt oxide on CeO2, ethylene diamine (ED) and reduced graphene oxide (rGO) supported materials shows tremendous potential. Despite the enormous interest in single metal atom oxide (SMAO) catalysts, it is still very difficult to directly convert readily available bulk metal oxide into single atom oxide. It is crucial and tough to create high performance materials for the oxygen evolution reaction (OER) in an alkaline environment. Herein, a single tungsten, copper and cobalt atom oxide (SMAO) anchored on the CeO2 atomic layer and overall components deposited on the rGO (rGO-ED-CeO2-WCuCo) is prepared through a one-pot sonication technique. The presence of SMAO is identified by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging. The electrocatalytic performance of final rGO-ED-CeO2-WCuCo-30 nanocomposite for the OER in 1 M KOH electrolyte is evidenced by providing low overpotential of 283 mV at 10 mA cm-2. The Tafel slope for OER using rGO-ED-CeO2-WCuCo-30 electrocatalysts is 57.03 mV dec-1. The electrocatalytic activity of rGO-ED-CeO2-WCuCo-30 nanocomposites for OER was noticeably increased when compared to bare CeO2 nanorods (401 mV), rGO-ED-CeO2-WCo-30 (345 mV), rGO-ED-CeO2-WCu-30 (340 mV) and rGO-ED-CeO2-WCuCo-20 (321 mV) samples.


Asunto(s)
Cobre , Sonicación , Tungsteno , Óxidos , Oxígeno
2.
Adv Mater ; 31(52): e1903491, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31725182

RESUMEN

Metal oxides, as one of the mostly abundant and widely utilized materials, are extensively investigated and applied in environmental remediation and protection, and in energy conversion and storage. Most of these diverse applications are the result of a large diversity of the electronic states of metal oxides. Noticeably, however, many metal oxides present obstacles for applications in catalysis, mainly due to the lack of efficient active sites with desired electronic states. Here, the fabrication of single-tungsten-atom-oxide (STAO) is demonstrated, in which the metal oxide's volume reaches its minimum as a unit cell. The catalytic mechanism in the STAO is determined by a new single-site physics mechanism, named as quasi-atom physics. The photogenerated electron transfer process is enabled by an electron in the spin-up channel excited from the highest occupied molecular orbital to the lowest unoccupied molecular orbital +1 state, which can only occur in STAO with W5+ . STAO results in a record-high and stable sunlight photocatalytic degradation rate of 0.24 s-1 , which exceeds the rates of available photocatalysts by two orders of magnitude. The fabrication of STAO and its unique quasi-atom photocatalytic mechanism lays new ground for achieving novel physical and chemical properties using single-metal-atom oxides (SMAO).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA