Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.040
Filtrar
1.
Biomater Transl ; 5(1): 69-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220663

RESUMEN

The repair of large load-bearing bone defects requires superior mechanical strength, a feat that a single hydrogel scaffold cannot achieve. The objective is to seamlessly integrate optimal microarchitecture, mechanical robustness, vascularisation, and osteoinductive biological responses to effectively address these critical load-bearing bone defects. To confront this challenge, three-dimensional (3D) printing technology was employed to prepare a polycaprolactone (PCL)-based integrated scaffold. Within the voids of 3D printed PCL scaffold, a methacrylate gelatin (GelMA)/methacrylated silk fibroin (SFMA) composite hydrogel incorporated with parathyroid hormone (PTH) peptide-loaded mesoporous silica nanoparticles (PTH@MSNs) was embedded, evolving into a porous PTH@MSNs/GelMA/SFMA/PCL (PM@GS/PCL) scaffold. The feasibility of fabricating this functional scaffold with a customised hierarchical structure was confirmed through meticulous chemical and physical characterisation. Compression testing unveiled an impressive strength of 17.81 ± 0.83 MPa for the composite scaffold. Additionally, in vitro angiogenesis potential of PM@GS/PCL scaffold was evaluated through Transwell and tube formation assays using human umbilical vein endothelium, revealing the superior cell migration and tube network formation. The alizarin red and alkaline phosphatase staining assays using bone marrow-derived mesenchymal stem cells clearly illustrated robust osteogenic differentiation properties within this scaffold. Furthermore, the bone repair potential of the scaffold was investigated on a rat femoral defect model using micro-computed tomography and histological examination, demonstrating enhanced osteogenic and angiogenic performance. This study presents a promising strategy for fabricating a microenvironment-matched composite scaffold for bone tissue engineering, providing a potential solution for effective bone defect repair.

2.
Mater Today Bio ; 28: 101193, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221204

RESUMEN

The physical properties of a biomaterial play a vital role in modulating macrophage polarization. However, discerning the specific effects of individual parameters can be intricate due to their interdependencies, limiting the mechanism underlying a specific parameter on the polarization of macrophages. Here, we engineered silk fibroin (SF) films with tunable surface roughness while maintaining similar physical properties by combining casting and salting out techniques. We demonstrate that increased surface roughness in SF films promotes M2-like macrophage polarization, characterized by enhanced secretion of anti-inflammatory cytokines. Transcriptomic analysis unveils the modulation of genes associated with extracellular matrix-cell interactions, highlighting the role of surface topography in regulating cellular processes. Mechanistically, we show that surface roughness induces macrophage membrane curvature, facilitating integrin αv endocytosis and thereby inhibiting the integrin-NF-kB signaling pathway. In vivo implantation assays corroborate that rough SF films substantially mitigate early inflammatory responses. This work establishes a direct link between surface roughness and intracellular signaling in macrophages, adding to our understanding of the biomaterial surface effect at the material-cell interface and bringing insights into material design.

3.
Anal Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254883

RESUMEN

129Xe NMR spectroscopy of polymers can provide important information on void spaces, sometimes called free volume, in polymers. Unfortunately, the spectroscopy's low sensitivity has limited its widespread use in both academic and industrial research. In order to overcome such a difficult situation, hyper-CEST method which employs hyperpolarization and CEST techniques, is examined after the introduction of recirculation and subtraction modes. Alongside the incorporated stopped-flow technique, these modes were very efficient in detecting very weak hidden signals from cellulose nanofiber (CNF) and silk fibroin (SF) films and in discussing the void space in these polymers. From the analysis of detailed saturation frequency dependence in the increment of 100 Hz, the chemical shifts of hidden peaks were successfully determined to give reasonable values for the size of void space in CNF and SF. Application on thermoplastic polyurethane film also supported our method of analysis. The subtraction mode was very efficient in judging the presence or absence of any peak at a fixed saturation frequency. These facts support that the mode will surely be useful in the future exploratory study of very weak hidden signals.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39259945

RESUMEN

Magnetically responsive soft biomaterials are at the forefront of bioengineering and biorobotics. We have created a magnetic hybrid material by coupling silk fibroin─i.e., a natural biopolymer with an optimal combination of biocompatibility and mechanical robustness─with the FeCo alloy, the ferromagnetic material with the highest saturation magnetization. The material is in the form of a 6 µm-thick silk fibroin film, coated with a FeCo layer (nominal thickness: 10 nm) grown by magnetron sputtering deposition. The sputtering deposition technique is versatile and eco-friendly and proves effective for growing the magnetic layer on the biopolymer substrate, also allowing one to select the area to be decorated. The hybrid material is biocompatible, lightweight, flexible, robust, and water-resistant. Electrical, structural, mechanical, and magnetic characterization of the material, both as-prepared and after being soaked in water, have provided information on the adhesion between the silk fibroin substrate and the FeCo layer and on the state of internal mechanical stresses. The hybrid film exhibits a high magnetic bending response under a magnetic field gradient, thanks to an ultralow fraction of the FeCo component (less than 0.1 vol %, i.e., well below 1 wt %). This reduces the risk of adverse health effects and makes the material suitable for bioactuation applications.

5.
Chempluschem ; : e202400478, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261401

RESUMEN

The antibacterial properties of modified silk fibroin microfibers (SF MFs) have been widely studied. Among various modifications, integration of silver nanoparticles (Ag NPs) and SF MFs has garnered significant attention due to the broad-spectrum antibacterial activities and long-term antibacterial effect of Ag nanomaterials. However, the traditional introduction of reducing agents or other additives during the synthesis of Ag-SF composite MFs potentially affects their structure and antibacterial properties. Facile, green and effective methods for the preparation of Ag-SF MFs with enhanced antibacterial properties are therefore highly desired. In this study, Ag NPs were uniformly in-situ deposited onto the optimized SF MFs by adjusting the pH and duration conditions under the guidance of green chemistry. The loaded Ag NPs have a good dispersibility and an average size of ~10 nm. The stability of SF MFs after the deposition of Ag NPs and the crystalline features of the loaded Ag NPs have been carefully investigated. Moreover, antibacterial experiments confirmed that Ag-SF MFs exhibited superior antibacterial activities. After co-incubating Ag-SF MFs with L929 cells, the cell viability reached 90%, demonstrating the great biocompatibility of the modified fibers. This green in-situ synthetic method will promote the further medical use of Ag-SF MFs in antibacterial fields.

6.
J Biomater Appl ; : 8853282241281439, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264258

RESUMEN

Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.

7.
Food Chem ; 463(Pt 2): 141179, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276556

RESUMEN

In this study, an antimicrobial component, silk protease inhibitors (SPIs), was extracted from discarded silkworm cocoons, and a suitable degumming method for obtaining regenerated silk fibroin (SF) was screened. An edible antimicrobial coating was prepared by mixing SPIs with SF for evaluation of potential in strawberries preservation. Results demonstrated that SPI could effectively inhibit mycelial growth and spore germination. The alkaline protease method exhibited the highest degumming rate of 24.4 %. The SPI-SF coating exhibited excellent mechanical properties, high water vapor permeability, and easy washability. Within 10 days, seedlings treatment with SPI-SF coating solution showed a germination rate of 94.3 %, and exhibited good biocompatibility with HepG2 cells. Coating with SPI-SF led to increase in the storage period of strawberries to 10-14 days, concurrent with considerable reduction in decay rate at room temperature. Conclusively, this study demonstrates the potential of SPI-SF edible coating in strawberries preservation.

8.
Int J Biol Macromol ; 278(Pt 4): 135101, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39227275

RESUMEN

Silk fibroin (SF), a natural biodegradable and biocompatible protein, has garnered significant attention in biomedical applications due to its impressive properties, including excellent biocompatibility, biodegradability, and mechanical resilience. Nevertheless, its broader usage faces obstacles by its insufficient mechanical strength and electrical conductivity. In order to address these constraints, recent studies have concentrated on combining SF with cutting-edge nanomaterials like MXene and carbon-based materials. This review comprehensively examines the applications and potential of silk fibroin-MXene/carbon-based nanocomposites in biomedical fields. The unique properties of SF, MXene, and carbon-based materials are explored, emphasizing how their combination enhances mechanical strength, conductivity, and biocompatibility. These composites show substantial enhancements in performance for several biomedical applications by utilising the excellent conductivity and mechanical capabilities of MXene and carbonaceous elements. The innovative potential of these nanocomposites is highlighted by critically discussing key applications such as tissue engineering, drug delivery, and biosensing. In addition, the work discusses the latest research progress, difficulties, and future prospects in the sector, providing valuable insights into possible breakthroughs and uses. This review seeks to comprehensively analyse the existing information on silk fibroin-MXene/carbon based nanocomposites in healthcare.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Nanocompuestos , Ingeniería de Tejidos , Fibroínas/química , Nanocompuestos/química , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Humanos , Animales , Carbono/química , Sistemas de Liberación de Medicamentos , Técnicas Biosensibles
9.
Biotechnol Prog ; : e3502, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238226

RESUMEN

The immobilization of free enzymes is crucial for enhancing their stability in different environments, enabling reusability, and expanding their applications. However, the development of a straightforward immobilization method that offers stability, high efficiency, biocompatibility, and modifiability remains a significant challenge. Silk fibroin (SF) is a good carrier for immobilized enzymes and drugs. Here, we employed urease as a model enzyme and utilized our developed technology called unidirectional nanopore dehydration (UND) to efficiently dehydrate a regenerated SF solution containing urease in a single step, resulting in the preparation of a highly functionalized SF membrane immobilizing urease (UI-SFM). The preparation process of UI-SFM is based on an all-water system, which is mild, green and able to efficiently and stably immobilize urease in the membranes, maintaining 92.7% and 82.8% relative enzyme activity after 30 days of storage in dry and hydrated states, respectively. Additionally, we performed additional post-treatments, including stretching and cross-linking with polyethylene glycol diglycidyl ether (PEGDE), to obtain two more robust immobilized urease membranes (UI-SFMs and UI-SFMc). The thermal and storage stability of these two membranes were significantly improved, and the recovery ratio of enzyme activity reached more than 90%. After 10 repetitions of the enzymatic reaction, the activity recovery of UI-SFMs and UI-SFMc remained at 92% and 88%, respectively. The results suggest that both UND-based and post-treatment-developed membranes exhibit excellent urease immobilization capabilities. Furthermore, the enzyme immobilization method offers a straightforward and versatile approach for efficient and stable enzyme immobilization, while its flexible modifiability caters to diverse application requirements.

10.
Int J Biol Macromol ; 279(Pt 3): 135329, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236943

RESUMEN

Open wounds present a significant challenge in healthcare, requiring careful management to prevent infection and promote wound healing. Advanced wound dressings are critical need to enhance their hemostatic capabilities, antimicrobial properties, and ability to support angiogenesis and sustained moisture for optimal healing. This study introduces a flexible hemostatic dressing designed for open wounds, integrating chitosan (CS) for hemostasis and biocompatibility, silk fibroin (SF) for mechanical strength, and montmorillonite (MMT) for enhanced drug transport. The CSSF@MMT dressings showed promising mechanical strength and swift hemostasis. The CIP-loaded CSSF@MMT demonstrated sustained release for up to one week, exhibiting antibacterial properties against both Gram-positive and Gram-negative bacteria. In vitro cell migration assay demonstrated that erythropoietin-loaded CSSF@MMT dressings promoted the proliferation and migration of endothelial cells. Similarly, the chick embryo chorioallantoic membrane study indicated the same dressings exhibited a significant increase in vascular regeneration. This research suggests that the CSSF@MMT sponge dressing, incorporated with CIP and erythropoietin, holds promise in effectively halting bleeding, creating a protective environment, diminishing inflammation, and fostering wound tissue regeneration. This potential makes it a significant advancement in open wound care, potentially lowering the need for limb amputation and decreasing wound care burden worldwide.

11.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273212

RESUMEN

The use of biodegradable materials combined with natural metabolites in wound dressings has received much attention. Flavonoids (FLs) from green cocoons, as metabolites, have antibacterial, antioxidant, anti-inflammatory, and other pharmacological effects. In this study, composite membranes of FL-loaded polylactic glycolic acid (PLGA)/silk fibroin (SF) were prepared by an electrospinning method. The prepared membranes, including SF, exhibited a good slow-release effect and cytocompatibility. An in vitro evaluation of the FL-loaded PLGA/SF membranes demonstrated good antioxidant, antibacterial, and anti-inflammatory properties. Animal experiments showed that the wound healing rate of PLGA/SF-2.5FL membranes within 15 days was 97.3%, and that of the control group was 72.5%. The PLGA/SF-2.5FL membranes shortened the inflammatory period of a full-layer wound model and promoted skin regeneration and wound healing by downregulating expression of the pro-inflammatory cytokines IL-1ß and TNF-α and promoting expression of the growth factors VEGF, TGF-ß, and EGF. In summary, the PLGA/SF-2.5FL composite nanofibre membrane with anti-inflammatory properties is an ideal wound dressing to promote acute wound healing.


Asunto(s)
Fibroínas , Flavonoides , Nanofibras , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cicatrización de Heridas , Fibroínas/química , Fibroínas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Nanofibras/química , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Flavonoides/química , Flavonoides/farmacología , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Ratas , Masculino , Membranas Artificiales , Vendajes , Humanos
12.
Int J Biol Macromol ; : 135686, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293610

RESUMEN

Hydrogels are widely used due to their exceptional biocompatibility and adaptability, but their weak mechanical properties limit their application in biomedical engineering. Herein, we rapidly attained a comprehensive enhancement of silk fibroin hydrogels in mechanical properties by employing a physical-chemical double crosslinking strategy. The SF was ultrasonicated and simultaneously photo-crosslinked to form a di-tyrosine network interspersed with ß-sheet blocks, resulting in a SF hydrogel network structure with both rigid and flexible domains. The SF hydrogels exhibited a maximum breaking strength of 59.7 kPa and a Young's modulus of 82.2 MPa, demonstrating significant rigidity and flexibility. Subsequently, the silk screws prepared by this double crosslinking strategy showed extraordinary compressive strength and Young's modulus of 41.8 MPa and 10.9 MPa, respectively. The silk screws cocultured with osteoblasts showed optimal biocompatibility, and the rate of biodegradation could be matched to the rate of osteogenesis. The screw also exhibited high adaptability in the requirements of bone screws. In this study, the SF hydrogels prepared by physical-chemical double crosslinking have extraordinary mechanical properties and biocompatibility, which provides a new avenue for the preparation of high-performance hydrogels and has great potential in bone tissue engineering.

13.
Ann Biomed Eng ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294465

RESUMEN

Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.

14.
Small ; : e2403376, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221643

RESUMEN

Proteins are classified as biopolymers which share similar structural features with semi-crystalline polymers. Although their unique biocompatibility facilitates the universal applications of protein-based hydrogels in the biomedical field, the mechanical performances of protein-based hydrogels fall short of practical requirements. Conventional strategies for enhancing mechanical properties focus on forming regularly folded secondary structures as analogs of crystalline regions. This concept is based on proteins as the analogy of semi-crystalline polymers, in which crystalline regions profoundly contribute to the mechanical performances. Even though the contribution of the amorphous region is equally weighted for semi-crystalline polymers, their capacity to improve the mechanical performances of protein-based structures is still undervalued. Herein, the potential of promoting the mechanical performances is explored by controlling the state of amorphous regions in protein-based hydrogels. A fibril protein is chosen, regenerated silk fibroin (RSF), as a model molecule for its similar viscoelasticity with a semi-crystalline polymer. The amorphous regions in the RSF hydrogels are transformed from extended to entangled states through a double-crosslinking method. The formation of entanglement integrates new physically crosslinked points for remarkable improvement in mechanical performances. A robust hydrogel is not only developed but also intended to provide new insights into the structural-property relationship of protein-based hydrogels.

15.
Biomed Mater ; 19(5)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39121887

RESUMEN

Guided bone regeneration (GBR) membranes play an important role in oral bone regeneration. However, enhancing their bone regeneration potential and antibacterial properties is crucial. Herein, silk fibroin (SF)/polycaprolactone (PCL) core-shell nanofibers loaded with epigallocatechin gallate (EGCG) were prepared using emulsion electrospinning. The nanofibrous membranes were characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, water contact angle (CA) measurement, mechanical properties testing, drug release kinetics, and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) free radical scavenging assay. Mouse pre-osteoblast MC3T3-E1 cells were used to assess the biological characteristics, cytocompatibility, and osteogenic differentiation potential of the nanofibrous membrane. Additionally, the antibacterial properties againstStaphylococcus aureus (S. aureus)andEscherichia coli (E. coli)were evaluated. The nanofibers prepared by emulsion electrospinning exhibited a stable core-shell structure with a smooth and continuous surface. The tensile strength of the SF/PCL membrane loaded with EGCG was 3.88 ± 0.15 Mpa, the water CA was 50°, and the DPPH clearance rate at 24 h was 81.73% ± 0.07%. The EGCG release rate of membranes prepared by emulsion electrospinning was reduced by 12% within 72 h compared to that of membranes prepared via traditional electrospinning.In vitroexperiments indicate that the core-shell membranes loaded with EGCG demonstrated good cell compatibility and promoted adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the EGCG-loaded membranes exhibited inhibitory effects onE. coliandS. aureus. These findings indicate that core-shell nanofibrous membranes encapsulated with EGCG prepared using emulsion electrospinning possess good antioxidant, osteogenic, and antibacterial properties, making them potential candidates for research in GBR materials.


Asunto(s)
Antibacterianos , Regeneración Ósea , Catequina , Emulsiones , Escherichia coli , Fibroínas , Nanofibras , Osteogénesis , Poliésteres , Staphylococcus aureus , Animales , Fibroínas/química , Poliésteres/química , Ratones , Regeneración Ósea/efectos de los fármacos , Catequina/análogos & derivados , Catequina/química , Nanofibras/química , Antibacterianos/farmacología , Antibacterianos/química , Emulsiones/química , Staphylococcus aureus/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Andamios del Tejido/química , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Diferenciación Celular/efectos de los fármacos , Ensayo de Materiales , Membranas Artificiales , Resistencia a la Tracción , Liberación de Fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Células 3T3 , Línea Celular
16.
J Mech Behav Biomed Mater ; 158: 106674, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39088942

RESUMEN

Alveolar bone defects caused by tumor, trauma and inflammation can lead to the loss of oral function and complicate denture restoration. Currently, guided bone regeneration (GBR) barrier membranes for repairing bone defect cannot effectively promote bone regeneration due to their unstable degradation rate and poor antibacterial properties. Furthermore, they require additional tailoring before implantation. Therefore, this study developed a visible light-curing hydrogel membrane (CF-Cu) comprising methacrylated carboxymethyl chitosan (CMCS-MA), silk fibroin (SF), and copper nanoparticles (Cu NPs) to address these shortcomings of commercial membranes. The CF-Cu hydrogel, characterized by scanning electron microscopy (SEM), a universal testing machine, and swelling and degradation tests, demonstrated a smooth porous network structure, suitable swelling ratio, biodegradability, and enhanced mechanical strength. Cytotoxicity and hemolysis tests in vitro demonstrated excellent cyto- and hemo-compatibility of the CF-Cu hydrogel extracts. Additionally, evaluation of antibacterial properties in vitro, including colony forming unit (CFU) counts, MTT assays, and live/dead fluorescence staining, showed that the CF-Cu hydrogel exhibited excellent antibacterial properties, inhibiting over 80% of S. aureus, S. mutans, and P. gingivalis with CF-1Cu hydrogel compared to the control group. Moreover, evaluation of osteogenic differentiation of rBMSCs in vitro suggested that the CF-1Cu hydrogel significantly improved alkaline phosphatase (ALP) activity and the mineralization of extracellular matrix, up-regulating the expressions of osteogenesis-related genes (Runx2, ALP, Col-1, OPN and BSP). In summary, these results indicated that CF-1Cu hydrogel exhibited excellent cytocompatibility, antibacterial and osteogenic properties in vitro. Therefore, the CF-1Cu hydrogel holds potential as a viable material for application in GBR procedures aimed at addressing bone defects.


Asunto(s)
Antibacterianos , Regeneración Ósea , Quitosano , Cobre , Hidrogeles , Nanopartículas del Metal , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Cobre/química , Antibacterianos/química , Antibacterianos/farmacología , Regeneración Ósea/efectos de los fármacos , Nanopartículas del Metal/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Luz , Osteogénesis/efectos de los fármacos , Membranas Artificiales , Staphylococcus aureus/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
17.
Biosensors (Basel) ; 14(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39194616

RESUMEN

Due to the clinical similarities between pulmonary embolism (PE) and myocardial infarction (MI), physicians often encounter challenges in promptly distinguishing between them, potentially missing the critical window for the correct emergency response. This paper presents a biosensor, termed the PEMI biosensor, which is designed for the identification and quantitative detection of pulmonary embolism or myocardial infarction. The surface of the working electrode of the PEMI biosensor was modified with graphene oxide and silk fibroin to immobilize the mixture of antibodies. Linear sweep voltammetry was employed to measure the current-to-potential mapping of analytes, with the calculated curvature serving as a judgment index. Experimental results showed that the curvature exhibited a linear correlation with the concentration of antigen FVIII, and a linear inverse correlation with the concentration of antigen cTnI. Given that FVIII and cTnI coexist in humans, the upper and lower limits were determined from the curvatures of a set of normal concentrations of FVIII and cTnI. An analyte with a curvature exceeding the upper limit can be identified as pulmonary embolism, while a curvature falling below the lower limit indicates myocardial infarction. Additionally, the further the curvature deviates from the upper or lower limits, the more severe the condition. The PEMI biosensor can serve as an effective detection platform for physicians.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Infarto del Miocardio , Embolia Pulmonar , Embolia Pulmonar/diagnóstico , Infarto del Miocardio/diagnóstico , Humanos , Grafito/química , Electrodos , Troponina I/análisis
18.
Gels ; 10(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39195014

RESUMEN

Melanoma is one of the most aggressive forms of skin cancer, which is characterized by metastasis and poor prognosis due to the limited effectiveness of current therapies and the toxicity of conventional drugs. For this reason and in recent years, one of the most promising strategies in the treatment of this form of cancer is the use of drug delivery systems as carriers capable of conveying the therapeutic agent into the tumor microenvironment, thus preventing its degradation and improving its safety and effectiveness profiles. In the present work, microparticles based on silk fibroin and epifibroin 0039, silk-derived proteins loaded with idebenone, were created, which act as therapeutic carriers for topical use in the treatment of melanoma. The resulting particles have a spherical shape, good loading efficiency, and release capacity of idebenone. Efficacy studies have demonstrated a reduction in the proliferation of COLO-38, melanoma tumor cells, while safety tests have demonstrated that the microparticles are not cytotoxic and do not possess prosensitizing activity. Notably, transdermal release studies revealed that all particles released idebenone over more days. The analysis of the stimulatory markers of the proinflammatory process, CD54 and CD86, did not show any increase in expression, thus confirming the absence of potential prosesensitization effects of the silk fibroin-based particles. The research, therefore, found that idebenone-loaded silk protein microparticles could effectively reduce the proliferation of melanoma cells without cytotoxicity. This indicates the promise of a safe and effective treatment of melanoma.

19.
Int J Biol Macromol ; 279(Pt 1): 135052, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182875

RESUMEN

Hydrogels based on natural polymers have lightened the path of novel drug delivery systems, wound healing, and tissue engineering fields because they are renewable, non-toxic, biocompatible, and biodegradable. Furthermore, applying modified hydrogels can upgrade their biological activity. Herein, Chitosan (CS) was used to create a hydrogel using terephthaloyl thiourea as a cross-linker. Silk fibroin (SF) and carbon nitride (CN) were added to the hydrogel to enhance its strength and biocompatibility. Finally, CS hydrogel/SF/CN was in situ magnetized using Fe3O4 magnetic nanoparticles (MNPs) and manufactured as a nanobiocomposite for improved hyperthermia. The structural properties of the nanobiocomposite were assessed using several analytical techniques, including VSM, FTIR, TGA, EDX, XRD, and FESEM. The saturation magnetization of this magnetic nanocomposite was 23.94 emu/g. The hemolytic experiment on the nanobiocomposite resulted in ca. 98 % cell survival, with a hemolysis rate of 1.69 %. Anticancer property is confirmed by a 20.0 % reduction in cell viability of BT549 cells at 1.75 mg/mL concentration compared to 0.015 mg/mL. The nanocomposite is non-toxic to the human embryonic kidney cell line (HEK293T), indicating its potential for biomedical applications. Finally, the magnetic nanocomposite's hyperthermia behavior was examined using a specific absorption rate (SAR), achieving the highest value of 47.44 W/g at 200.0 kHz. When subjected to an alternating magnetic field, the nanobiocomposite may perform well in hyperthermia therapy. These results indicate that the magnetic nanobiocomposite has the potential to perform well in hyperthermia therapy when subjected to an alternating magnetic field.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124899, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094269

RESUMEN

As a type of biosurfactant, rhamnolipids (RLs) are multifunctional skin-care ingredients, and the molecular interaction of RLs with silk fibroin (SF) is a more complicated process than has long been believed. The interaction and functional properties of them, and their potential as fungicidal agents for agricultural products and as organic preservatives for cosmetics were assessed in this paper. The SF addition makes the RLs aggregation easier through the complexes formation, which decreases the applied concentration of surfactant. The results of spectroscopic analyses and molecular docking suggest that hydrogen bonding and van der Waals forces are significant contributed to the binding mechanism between the two substances. The addition of SF notably enhances the foaming capacity and stability of RLs. The certain antibacterial and antifungal properties of RLs are basically not affected by the SF addition, even the SF-RLS system demonstrates an unobvious synergistic inhibitory impact on Glomerella cingulate (GC). The results offer a theoretical framework for the utilization of RLs as natural fungicides and preservatives in presence of nutritional components, considering the properties of RLs as nontoxic, biodegradable, environmentally friendly, and good compatibility.


Asunto(s)
Antiinfecciosos , Fibroínas , Glucolípidos , Simulación del Acoplamiento Molecular , Glucolípidos/química , Glucolípidos/farmacología , Fibroínas/química , Fibroínas/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Hongos/efectos de los fármacos , Tensoactivos/química , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA