Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498587

RESUMEN

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD, which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Catálisis , Fosfatos de Dinucleósidos/química , Activación Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Transducción de Señal , Relación Estructura-Actividad
2.
ACS Appl Mater Interfaces ; 11(49): 45726-45736, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718139

RESUMEN

Large volume expansion and serious pulverization of silicon are two major challenges for Si-based anode batteries. Herein, a high-mass-load (3.0 g cm-3) silicon-doped amorphous carbon (Si/a-C) nanocomposite with a hierarchical buffer structure is prepared by one-step magnetron sputtering. The uniform mixing of silicon and carbon is realized on the several-nanometer scale by cosputter deposition of silicon and carbon. The boundary of the primary particles, made up of nanocarbon and nanosilicon, and the boundary of the secondary particles aggregated by the primary particles can provide accommodation space for the volume expansion of silicon and effectively buffer the volume expansion of silicon. Meanwhile, the continuous and uniformly distributed amorphous carbon enhances the conductivity of the Si/a-C nanocomposites. Typically, the 20% Si/a-C cell shows a superior initial discharge capacity of 845.3 mAh g-1 and achieves excellent cycle performance of up to 1000 cycles (609.4 mAh g-1) at the current density of 1 A g-1. Furthermore, the 20% Si/a-C cell exhibits a high capacity of 602.8 mAh g-1 with the stable discharge/charge rate performance in several extreme conditions (-40-70 °C). In view of the validity and mass productivity of the magnetron sputtering, a potential route for the industrial preparation of the Si/a-C anode nanocomposites is therefore highlighted by this study.

3.
Sci Total Environ ; 685: 380-391, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176223

RESUMEN

Water treatments that provide efficient removal of organic and inorganic disinfection by-product (DBP) precursors across variable natural organic matter (NOM) sources are desirable. Treatments that effectively remove inorganic DBP precursors such as bromide, which significantly shift the speciation of DBP formation towards more toxic DBPs, are of particular interest and have been less investigated. This study characterised NOM isolated from three major drinking water sources in Southeast Queensland (SEQ), Australia, and compared it to the International Humic Substances Society (IHSS) Suwannee River NOM isolate (SR) in terms of DBP precursor removal treatments and DBP formation. Each NOM isolate was used to make synthetic water samples with otherwise identical water quality parameters, that were treated with enhanced coagulation (EC) or EC followed by; anion exchange (MIEX® resin), powdered activated carbon (PAC), granular activated carbon (GAC) or silver impregnated activated carbon (SIAC), to investigate the removal of DBP precursors (bromide and DOC), minimisation of DBPs, as well as the change in specific chlorine demand. EC/SIAC treatment was the most effective method of DBP control studied, due to the efficient simultaneous NOM and bromide adsorption of the SIAC (99 ±â€¯1% bromide removal regardless of NOM source). This treatment also resulted in >92% removal of each of the measured DBPs across all NOM sources, with the exception of DBAN and 1,1-DCP, which achieved >80% removal across all NOM sources. Increases in tribromomethane (TBM) and dibromoacetonitrile (DBAN) formation were observed after all other treatment/NOM-isolate combinations, due to increased Br:DOC ratio after treatment, whereas chlorinated DBPs were generally well-controlled by all treatment/NOM-isolate combinations. Differences in reactivity of the individual NOM isolates were found to be related to both the origin of the isolate and the treatment employed, however, bromide removal capacity for each treatment was independent of NOM source.


Asunto(s)
Monitoreo del Ambiente , Sustancias Húmicas/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Australia , Desinfectantes/análisis , Desinfección , Agua Potable/química , Contaminantes Químicos del Agua/normas
4.
Water Res ; 138: 152-159, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29587151

RESUMEN

Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag+), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production.


Asunto(s)
Bromuros/química , Carbono/química , Compuestos de Plata/química , Plata/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Desinfección/métodos , Halogenación , Concentración de Iones de Hidrógeno , Propiedades de Superficie
5.
SIAM J Sci Comput ; 39(4): A1741-A1765, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081643

RESUMEN

Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP0 filters outperform the more complex known boundary filters. NP0 filters typically reduce the L∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute.

6.
Sci Total Environ ; 542(Pt A): 672-84, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546763

RESUMEN

During disinfection, bromide, iodide and natural organic matter (NOM) in source waters can lead to the formation of brominated and/or iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The objective of this study was to compare the efficiency of a silver-impregnated activated carbon (SIAC) with the equivalent unimpregnated granular activated carbon (GAC) for the removal of bromide, iodide and NOM from a matrix of synthetic waters with variable NOM, halide, and alkalinity concentrations, and to investigate the impact on DBP formation. An enhanced coagulation (EC) pre-treatment was employed prior to sample exposure to either carbon adsorbent. Excellent halide removals were observed by the SIAC treatment across the sample matrix, with iodide concentrations consistently reduced to below the method reporting limit (<2 µg/L) from as high as 25 µg/L, and 95±4% removal of bromide achieved. Bromide removal by unimpregnated GAC was poor, however iodide removal was comparable to that achieved by SIAC. The combination of EC with SIAC treatment removed 77±8% of the dissolved organic carbon (DOC) present, across the sample matrix, which was similar to removals by EC/GAC (67±14%). Combined EC/SIAC treatment reduced both total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs) formation by 97±3%, while also achieving a greater than 74% removal of two chloropropanones and a 92±8% decrease in chloral hydrate (CH), compared to untreated samples, regardless of the sample's starting water quality (bromide, alkalinity and NOM concentration). Combined EC/GAC treatment led to similar DBP removals to EC/SIAC for the fully chlorinated DBPs, however, brominated DBPs were less efficiently removed, or experienced concentration increases.


Asunto(s)
Carbón Orgánico/química , Desinfección/métodos , Plata/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Trihalometanos/análisis
7.
J Neurosurg Spine ; 24(2): 217-222, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26496162

RESUMEN

OBJECT Despite advances in therapies using radiation oncology and spinal oncological surgery, there is a subgroup of patients with spinal metastases who suffer from progressive or recurrent epidural disease and remain at risk for neurological compromise. In this paper the authors describe their initial experience with a novel therapeutic approach that consists of intraarterial (IA) infusion of chemotherapy to treat progressive spinal metastatic disease. METHODS The main inclusion criterion was the presence of progressive, metastatic epidural disease to the spine causing spinal canal compromise in patients who were not candidates for the standard treatments of radiation therapy and/or surgery. All tumor histological types were eligible for this trial. Using the transfemoral arterial approach and standard neurointerventional techniques, all patients were treated with IA infusion of melphalan in the arteries supplying the epidural tumor. The protocol allowed for up to 3 procedures repeated at 3- to 6-week intervals. Outcome measures included physiological measures: 1) periprocedural complications according to the National Cancer Institute's Common Terminology Criteria for Adverse Events; and 2) MRI to assess for tumor response. RESULTS Nine patients with progressive spinal metastatic disease and cord compression were enrolled in a Phase I clinical trial of selective IA chemotherapy. All patients had metastatic disease from solid organs and were not candidates for further radiation therapy or surgery. A total of 19 spinal intraarterial chemotherapy (SIAC) procedures were performed, and the follow-up period ranged from 1 to 7 months (median 3 months). There was 1 serious adverse event (febrile neutropenia). Local tumor control was seen in 8 of 9 patients, whereas tumor progression at the treated level was seen in 1 patient. CONCLUSIONS These preliminary results support the hypothesis that SIAC is feasible and safe.

8.
Comput Math Appl ; 70(5): 1046-1050, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26594090

RESUMEN

The discontinuous Galerkin (dG) method outputs a sequence of polynomial pieces. Post-processing the sequence by Smoothness-Increasing Accuracy-Conserving (SIAC) convolution not only increases the smoothness of the sequence but can also improve its accuracy and yield superconvergence. SIAC convolution is considered optimal if the SIAC kernels, in the form of a linear combination of B-splines of degree d, reproduce polynomials of degree 2d. This paper derives simple formulas for computing the optimal SIAC spline coefficients for the general case including non-uniform knots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA