Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Ethnopharmacol ; : 118795, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278293

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine (TCM) has a rich history spanning 2,000 years. Shuanghuanglian, a traditional Chinese herbal formula composed of three botanicals, is primarily used to treat colds, respiratory infections (including bacterial pneumonia), and pharyngitis. Previous research has found that the volatile oil of Shuanghuanglian is crucial for its efficacy. However, there is a lack of studies investigating its mechanisms. AIM OF THE STUDY: This study aims to explore the antibacterial and anti-inflammatory mechanisms of Shuanghuanglian volatile oil and its potential to enhance the antibacterial effects when used in conjunction with antibiotics. METHODS: Determination of the GC-MS fingerprint of SVO using Gas Chromatography-Mass Spectrometry (GC-MS) , The antibacterial effects of SVO on multidrug-resistant Klebsiella pneumoniae (MDR-KP) were assessed by detecting MIC, checkerboard method assay, time-kill curves, resistance growth curves, transcriptome sequencing analysis, scanning electron microscopy(SEM), purification, and quantitative analysis of extracellular polysaccharides(EPS). In vivo part, an MDR-KP induced mouse pneumonia model was established to evaluate the mitigating effects of SVO on mouse pneumonia, using comprehensive network pharmacology and bioinformatics to identify genes related to bacterial pneumonia and potential targets of SVO. Validation was performed through molecular docking, qPCR, and ELISA tests. RESULTS: SVO modulates the expression of MDR-KP mRNA for wecB, wecC, murA, murD, murE, murF, inhibiting the synthesis of O-antigen polysaccharides and peptidoglycans, thereby compromising bacterial cell wall integrity and affecting the synthesis of biofilms. These actions not only exhibit antibacterial effects but also enhance antibacterial activity, restoring the sensitivity of CEF to MDR-KP. SVO suppresses the biological activity of PTGS2, reducing the production of Prostaglandin E2 (PGE2), thereby exerting antipyretic and anti-inflammatory effects, providing new insights for the development of natural non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSIONS: Our research indicates that SVO exerts antipyretic, anti-inflammatory, and antibacterial synergistic effects through multiple pathways.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37453388

RESUMEN

Shuang-Huang-Lian powder injection (SHLPI) is a natural drug injection made of honeysuckle, scutellaria baicalensis and forsythia suspensa. It has the characteristics of complex chemical composition and difficult metabolism research in vivo. LC-MS platform has been proven to be an important analytical technology in plasma metabolomics. Unfortunately, the lack of an effective sample preparation strategy before analysis often significantly impacts experimental results. In this work, twenty-one extraction protocols including eight protein precipitation (PPT), eight liquid-liquid extractions (LLE), four solid-phase extractions (SPE), and one ultrafiltration (U) were simultaneously evaluated using plasma metabolism of SHLPI in vivo. In addition, a strategy of "feature ion extraction of the multi-component metabolic platform of traditional Chinese medicine" (FMM strategy) was proposed for the in-depth characterization of metabolites after intravenous injection of SHLPI in rats. The results showed that the LLE-3 protocol (Pentanol:Tetrahydrofuran:H2O, 1:4:35, v:v:v) was the most effective strategy in the in vivo metabolic detection of SHLPI. Furthermore, we used the FMM strategy to elaborate the in vivo metabolic pathways of six representative substances in SHLPI components. This research was completed by ion migration quadrupole time of flight mass spectrometer combined with ultra high performance liquid chromatography (UPLC/Vion™-IMS-QTof-MS) and UNIFI™ metabolic platform. The results showed that 114 metabolites were identified or preliminarily identified in rat plasma. This work provides relevant data and information for further research on the pharmacodynamic substances and in vivo mechanisms of SHLPI. Meanwhile, it also proves that LLE-3 and FMM strategies could achieve the in-depth characterization of complex natural drug metabolites related to Shuang-Huang-Lian in vivo.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas , Animales , Polvos , Espectrometría de Masas , Cromatografía Liquida , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos
3.
Front Pharmacol ; 14: 1200199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484014

RESUMEN

Introduction: Shuanghuanglian injection (lyophilized) (SHLI) is commonly used to treat respiratory tract infection. Shenmai injection (SMI) is mainly used to treat cardiovascular diseases. Despite their widespread clinical use, anaphylactoid reactions (ARs) induced by SHLI and SMI have been reported, which have attracted broad attention. However, the impact of ARs on metabolic changes and the underlying mechanisms are still unclear. Methods: ICR mice were used as model animals and were treated with normal saline, C48/80, SHLI and SMI, respectively. The behavior of mice, auricle blue staining and Evans Blue exudation were used as indexes to evaluate the sensitization of SHLI and SMI and determine the optimal sensitization dose. Anaphylactoid mice model was established based on the optimal dose and enzyme-linked immunosorbent assay (ELISA) was used to model verification. Afterwards, plasma samples of administered mice were profiled by LC-MS metabolomics and analyzed to evaluate the changes in metabolites. Results: High doses of both SHLI and SMI can induce severe anaphylactoid reactions while the reaction induced by SMI was weaker. A Partial Least-Squares Discriminant Analysis (PLS-DA) score plot indicated that following administration, significant metabolic changes occurred in mice. 23 distinct metabolites, including deoxycholic acid, histamine, and 5-hydroxytryptophan, were identified in the SHLI groups. 11 distinct metabolites, including androsterone, 17α-hydroxypregnenolone, and 5-hydroxyindoleacetate, were identified in the SMI groups. Meanwhile, different metabolic pathways of SHLI and SMI were predicted by different metabolites. The associated metabolic pathways include steroid hormone biosynthesis, tryptophan metabolism, histidine metabolism, arachidonic acid metabolism, nicotinate and nicotinamide metabolism, and primary bile acid biosynthesis. Conclusion: Study showed that both SHLI and SMI can induce varying degrees of anaphylactoid reactions, a positive correlation between response intensity and dose was observed. Metabolomics showed that SHLI and SMI may promote the simultaneous release of hormones and inflammatory factors by disturbing relevant metabolic pathways, while SMI may also inhibit the release of inflammatory factors in arachidonic acid metabolic pathway, indicating both pro-inflammatory and anti-inflammatory effects. This study will serve as a reference for developing a new approach to evaluate the safety of SHLI and SMI from perspective of susceptible drug varieties. However, ARs mechanism requires further verification.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122008, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36283204

RESUMEN

Quality evaluation and consistency evaluation of drugs are the keys to ensure the therapeutic effect and safety of drugs. In this study, attenuated total refraction infrared (ATR-IR) spectroscopy and near-infrared (NIR) spectroscopy combined with chemometrics were used for rapid detection and quality evaluation of active components of Shuang-Huang-Lian injection (SHLI), a traditional Chinese medicine preparation commonly used in China. Taking the chromatographic detection results as a reference, the partial least squares (PLS) model based on ATR-IR and NIR data was constructed by removing the bands with serious noise interference and low signal frequency band. The results showed that the PLS model achieved satisfactory results for the prediction of the three active components (chlorogenic acid, baicalin and phillyrin) in SHLI, indicating that the two spectral techniques combined with the PLS regression method could be successfully used for rapid quantitative analysis of the three active ingredients in SHLI. Relatively, the PLS model based on the ATR-IR spectrum has higher R2 and smaller RMSE than it based on the NIR spectrum. Furthermore, based on the rapid quantitative analysis of the three active ingredients in SHLI, the quality of 140 SHLI samples from seven manufacturers was evaluated by TOPSIS (technique for order preference by similarity to the ideal solution) analysis, and the consistency of different batches of SHLI products from the same manufacturer was evaluated. The results showed that there were differences in the quality of SHLI produced by different manufacturers, and the quality of different batches of SHLI produced by the same manufacturer was not completely consistent. In conclusion, ATR-IR and NIR spectroscopy combined with chemometrics can be used for accurate and rapid quantitative analysis and quality evaluation of SHLI. This study provides a good idea for the rapid quantitative analysis and quality evaluation of drugs or food based on spectroscopic technology and chemometrics.


Asunto(s)
Coptis chinensis , Espectroscopía Infrarroja Corta , Quimiometría , Medicina Tradicional China , Análisis de los Mínimos Cuadrados
5.
Artículo en Inglés | MEDLINE | ID: mdl-36265206

RESUMEN

Acute lung injury (ALI) is a common clinical disease that seriously affects people's health and endangers their lives. Shuanghuanglian (SHL) oral liquid is a well-known traditional Chinese medicine (TCM) preparation that is often used clinically to treat respiratory infections. SHL oral liquid has good efficacy, but its mechanism is still unclear. A strategy combining the identification of transitional components in blood and network pharmacology was proposed and applied to explore the potential anti-ALI mechanism of SHL oral liquid. A UHPLC-Q-Exactive Orbitrap-MS method was first developed to characterize the metabolic profiling of rat serum after gavage administration of SHL oral liquid. Then, based on the identified compounds, network pharmacology was used to establish a component-target-pathway network to explore the molecular mechanism of SHL oral liquid in the treatment of ALI. As a result, 92 transitional components in blood after oral administration of SHL oral liquid were identified, including 28 prototype components and 64 metabolites, and the metabolic pathways were also estimated and analyzed. Based on network pharmacology, the key anti-ALI targets of SHL oral liquid were screened as ADORA1, PTGS2, EGFR, ALOX5 and TNF, and the key pathway was PI3K-Akt signal pathway. This study provided a basis and strategy for the follow-up study of the anti-ALI molecular mechanism of SHL oral liquid and revealing the mechanism of TCM.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Ratas , Animales , Estudios de Seguimiento , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Lesión Pulmonar Aguda/tratamiento farmacológico
6.
Front Pharmacol ; 13: 843877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837285

RESUMEN

Nowadays, there has been increased awareness that the therapeutic effects of natural medicines on inflammatory diseases may be achieved by regulating the gut microbiota. Shuanghuanglian oral liquid (SHL), the traditional Chinese medicine preparation, has been shown to be effective in clearing heat-toxin, which is widely used in the clinical treatment of respiratory tract infection, mild pneumonia, and common cold with the wind-heat syndrome. Yet the role of gut microbiota in the antipyretic and anti-inflammatory effects is unclear. In this study, a new strategy of the 16S rRNA gene sequencing and serum metabolomics that aims to explore the role of SHL in a rat model of the systemic inflammatory response induced by lipopolysaccharide would be a major advancement. Our results showed that the gut microbiota structure was restored in rats with inflammation after oral administration of SHL, thereby reducing inflammation. Specifically, SHL increased the relative abundance of Bacteroides and Faecalibacterium and decreased the abundance of Bifidobacterium, Olsenella, Aerococcus, Enterococcus, and Clostridium in the rat model of inflammatory disease. Serum metabolomic profile obtained by the orbitrap-based high-resolution mass spectrometry revealed significant differences in the levels of 39 endogenous metabolites in the inflammatory model groups, eight metabolites of which almost returned to normal levels after SHL treatment. Correlation analysis between metabolite, gut microbiota, and inflammatory factors showed that the antipyretic and anti-inflammatory effects of SHL were related to the recovery of the abnormal levels of the endogenous metabolites (N-acetylserotonin and 1-methylxanthine) in the tryptophan metabolism and caffeine metabolism pathway. Taken together, these findings suggest that the structural changes in the gut microbiota are closely related to host metabolism. The regulation of gut microbiota structure and function is of great significance for exploring the potential mechanism in the treatment of lipopolysaccharide-induced inflammatory diseases with SHL.

7.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3380-3385, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35851132

RESUMEN

The lack of rationality evaluation method for drug combination has long restricted its clinical application. In view of this, this study took Shuanghuanglian Injection as model drug and established a "physical-chemical-biological" sequential analysis method, which is expected to provide clues for improving the safety and effectiveness of clinical drug combination. With the methods of insoluble particle testing, isothermal titration calorimetry(ITC), and real time cellular analysis(RTCA), the rationality of Shuanghuanglian Injection combined with Ampicillin Sodium for Injection was assessed. The results showed that the number of insoluble particles>10 µm in the solution of the combination met the standard of Chinese Pharmacopoeia, while the number of insoluble particles>25 µm did not meet the standard. ITC detection demonstrated that the change of Gibbs free energy(ΔG) was less than 0 during the fusion process, indicating that the process was spontaneous and enthalpy-driven reaction. Therefore, the interaction between the two was mainly chemical reaction, and the internal substances may change. RTCA found that Shuanghuanglian Injection alone and Ampicillin Sodium for Injection alone basically had no inhibitory effect on the growth of HEK293 T cells, while the combination of the two suppressed the growth of HEK293 T cells, suggesting that the combination was toxic to HEK293 T cells. This study showed that Shuanghuanglian Injection and Ampicillin Sodium for Injection reacted, yielding toxicity. This suggested that the two should not be combined for application. With the "physical-chemical-biological" sequential analysis, the molecular interaction of drugs was clarified. The method can be further applied for evaluating the rationality of other Chinese and western medicine injections.


Asunto(s)
Ampicilina , Medicamentos Herbarios Chinos , Ampicilina/farmacología , Calorimetría , Combinación de Medicamentos , Medicamentos Herbarios Chinos/química , Células HEK293 , Humanos , Inyecciones
8.
J Sep Sci ; 45(15): 2956-2967, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35713475

RESUMEN

Shuanghuanglian oral liquid is a common traditional Chinese medicine used to treat respiratory tract infections. Its major components are baicalin, chlorogenic acid, and forsythin. In this study, the main drug-related components in human plasma after oral administration of Shuanghuanglian were initially identified using ultra-performance liquid chromatography-ultraviolet detector/quadrupole time-of-flight mass spectrometry. Thirteen components from baicalin were identified, including the parent drug baicalin and aglycone baicalein. Only one metabolite related to chlorogenic acid, a sulfate conjugate formed after hydrolysis, and one metabolite related to forsythin, a sulfate conjugate of forsythin aglycone, were detected. Subsequently, a liquid chromatography-tandem mass spectrometry method was established and validated to simultaneously determine baicalin and baicalein, the primary active components. After simple protein precipitation, the analytes were separated on a BEH C18 column using a 5 min-gradient elution to avoid interference from baicalin isomers and their in-source dissociation. Excellent linearity was observed over the concentration ranges of 5.00-2000 ng/ml for baicalin and 1.00-100 ng/ml for baicalein. The validated method was successfully applied to a pharmacokinetic study of an oral administration of 60 ml Shuanghuanglian in healthy subjects. This study provided a foundation to investigate the clinical efficacy and safety of Shuanghuanglian further.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Administración Oral , Ácido Clorogénico , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Humanos , Reproducibilidad de los Resultados , Sulfatos , Espectrometría de Masas en Tándem/métodos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121120, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35303496

RESUMEN

The ultimate goal of the study is to present a strategy to improve the accuracy of near-infrared spectroscopy detection of Shuanghuanglian oral liquid in glass bottles without damaging the primary packaging. we adopted the multi-position spectral modeling (MPSM) method to correct the spectral variation caused by the difference of bottle and measuring position, so as to improve the measurement accuracy and find the best site combination for measuring Shuanghuanglian oral liquid. Baicalin, total flavonoids and soluble solid contents were considered as the quality indicators of the oral liquid, and partial least squares (PLS) models were employed for the single-position and multi-position spectra, respectively. The root mean square error of the validation set (RMSEP) of the optimum multi-position models are 0.7412 mg/mL for baicalin, 1.1259 mg/mL for total flavonoids and 0.9491% for soluble solids contents. Compared with the traditional single-position spectral modeling method (SPSM method), MPSM method improved the prediction accuracy of baicalin, total flavonoids and soluble solid contents by 26.84%, 31.97% and 58.14% respectively. The results showed that the MPSM method can improve the measurement accuracy of bottled oral liquid and is an effective method to eliminate the uncertainty of measurement conditions.


Asunto(s)
Flavonoides , Espectroscopía Infrarroja Corta , Estudios de Factibilidad , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta/métodos
10.
Acta Pharmaceutica Sinica ; (12): 2445-2452, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-937059

RESUMEN

The combination of Shuanghuanglian injection (SHLI) and ciprofloxacin injection (CIPI) is frequently prescribed in clinical practice, but the basis for the combination is weak. In this study, isothermal titration calorimetry and ultraviolet-visible absorption spectrometry were applied to identify the molecular interactions of SHLI and its main components, chlorogenic acid and neochlorogenic acid with CIPI. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and cold-spray ionization mass spectrometry were performed to confirm that this molecular interaction was related to the formation of self-assembled supramolecular systems induced by chlorogenic acid and neochlorogenic acid with CIPI through weak intermolecular bonds. The antibacterial activity toward Pseudomonas aeruginosa (P. aeruginosa) was evaluated via molecular interactions, and the inhibitory ability of SHLI, chlorogenic acid and neochlorogenic acid against P. aeruginosa was significantly reduced after interaction with CIPI. A molecular docking study demonstrated that the reduced antibacterial ability was closely related to the competitive binding of drug molecules to the same binding site of the DNA gyrase B (GyrB) subunit of P. aeruginosa. The present study uncovered the intermolecular interactions of SHLI and its main components chlorogenic acid and neochlorogenic acid with CIPI from the perspective of molecular self-assembly and contribute to the reduction of its antibacterial ability, providing a basis for the clinical combination of SHLI and CIPI.

11.
Curr Top Med Chem ; 22(2): 83-94, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34636312

RESUMEN

As a traditional Chinese medicine (TCM), Shuang-Huang-Lian (SHL) has been widely used for treating infectious diseases of the respiratory tract such as encephalitis, pneumonia, and asthma. During the past few decades, considerable research has focused on pharmacological action, pharmacokinetic interaction with antibiotics, and clinical applications of SHL. A huge and more recent body of pharmacokinetic studies support the combination of SHL and antibiotics have different effects such as antagonism and synergism. SHL has been one of the best-selling TCM products. However, there is no systematic review of SHL preparations, ranging from protection against respiratory tract infections to interaction with antibiotics. Since their important significance in clinical therapy, the pharmacodynamics, pharmacokinetics, and interactions with antibiotics of SHL were reviewed and discussed. In addition, this review attempts to explore the possible potential mechanism of SHL preparations in the prevention and treatment of COVID-19. We are concerned about the effects of SHL against viruses and bacteria, as well as its interactions with antibiotics in an attempt to provide a new strategy for expanding the clinical research and medication of SHL preparations.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Humanos , Medicina Tradicional China , SARS-CoV-2
12.
J Sep Sci ; 45(5): 1020-1030, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34967127

RESUMEN

Shuanghuanglian is a common traditional Chinese medicine prescription. It is an herbal formula composed of Lonicerae Japonicae Flos, Scutellariae Radix, and Forsythiae Fructus. A comprehensive understanding of Shuanghuanglian oral dosage forms components was obtained using a method based on ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry for the separation and characterization of Shuanghuanglian oral liquids, granules, soft capsules, and effervescent tablets. A total of 358 components were chemically defined or tentatively identified, including flavonoids, caffeic acid derivatives, lignans, coumarins, iridoids, triterpenes, and anthraquinones. The results will provide a basis for the general study of Shuanghuanglian and be meaningful for the composition identification of traditional Chinese medicine prescriptions.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Flavonoides/análisis , Espectrometría de Masas/métodos , Medicina Tradicional China , Scutellaria baicalensis
13.
Toxicol Lett ; 349: 145-154, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34126182

RESUMEN

Cutaneous eruptions caused by the combination of Chinese and Western medicine have attracted widespread attention; however, the underlying mechanism remains unclear. This study aimed to evaluate the potential mechanism of cutaneous eruptions in vivo and in vitro using the combination of Shuanghuanglian injection powder (SHL) and aspirin (ASA) as an example. ASA and SHL co-administration induced inflammatory responses in HaCat cells, as evidenced by marked increases in the expression of IL-4 and TNF-α, and the level of apoptosis. Additionally, histopathological investigation of mice skin tissues showed local inflammatory cell infiltration. Western boltting was used to detect the effects of ASA on desmoglein-1 (DSG1) expression; we found that DSG1 expression was down-regulated in vivo and in vitro. Finally, the key components of SHL were administered to HaCat cells with down-regulated DSG1; it was seen that neochlorogenic acid and rutin have a significant effect on HaCat cell apoptosis. These results demonstrate that DSG1 deficiency is a potential cause of cutaneous eruptions caused by the combination of SHL and ASA, and neochlorogenic acid and rutin are the main allergenic components. This study provides a new research strategy for the safety evaluation of integrated traditional Chinese and Western medicine.


Asunto(s)
Apoptosis/efectos de los fármacos , Aspirina/toxicidad , Desmogleína 1/antagonistas & inhibidores , Erupciones por Medicamentos/etiología , Medicamentos Herbarios Chinos/toxicidad , Queratinocitos/efectos de los fármacos , Animales , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/toxicidad , Desmogleína 1/metabolismo , Erupciones por Medicamentos/metabolismo , Erupciones por Medicamentos/patología , Femenino , Células HaCaT , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-4/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones Endogámicos ICR , Ácido Quínico/análogos & derivados , Ácido Quínico/toxicidad , Rutina/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Ethnopharmacol ; 274: 114082, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33813012

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The off-label nebulization of Shuang-Huang-Lian (SHL) injection is often utilized to treat respiratory tract infections in China. However, the pulmonary biopharmaceutics of SHL was generally unknown, limiting the rational selection of therapeutic dose and dose frequency. AIM OF THE STUDY: To characterize the size distribution of nebulized aerosols and to compare the pharmacokinetics and the lung distribution of three chemical makers of SHL, chlorogenic acid (CHA), forsythiaside A (FTA) and baicalin (BC), after intratracheal and intravenous administration of SHL to rats. MATERIALS AND METHODS: The droplet size distribution profiles over nebulization process were dynamically monitored using a laser diffraction method whereas the levels of CHA, FTA and BC in plasma, lung tissues and bronchoalveolar lavage fluids (BALF) were determined by a validated LC-MS/MS assay. The pulmonary anti-inflammatory efficacy was evaluated using a lipopolysaccharide (LPS) induced lung inflammation model as indicated by the level of tumor necrosis factor-α (TNF-α) in BALF. RESULTS: The nebulization of SHL showed good inhalability and allowed the aerosols to reach the upper or lower respiratory tract dependent on the performance of selected nebulizers. Following intratracheal administration of SHL at different doses, CHA, FTA and BC were absorbed into the bloodstream with the mean absorption time being 67.5, 63.5 and 114 min, respectively, rendering mean absolute bioavailabilities between 42.4% and 61.4% roughly independent of delivered dose. Relative to the intravenous injection, the intrapulmonary delivery increased the lung-to-plasma concentration ratios of CHA, FTA and BC by more than 100 folds and markedly improved the lung availability by 563-676 folds, leading to enhanced and prolonged lung retention. The production of TNF-α in BALF was decreased by ~50% at an intratracheal dose of 125 µL/kg SHL to LPS-treated mice. CONCLUSION: The nebulization delivery of SHL is a promising alternative to the intravenous injection for the treatment of respiratory tract infections.


Asunto(s)
Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Ácido Clorogénico/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/uso terapéutico , Flavonoides/metabolismo , Glicósidos/metabolismo , Neumonía/tratamiento farmacológico , Administración por Inhalación , Administración Intravenosa , Animales , Disponibilidad Biológica , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Ácido Clorogénico/sangre , Flavonoides/sangre , Glicósidos/sangre , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones Endogámicos BALB C , Nebulizadores y Vaporizadores , Neumonía/inducido químicamente , Neumonía/inmunología , Ratas Wistar , Factor de Necrosis Tumoral alfa/inmunología
15.
Front Med ; 15(5): 704-717, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33909260

RESUMEN

We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, P = 0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), -46.39 (-86.83 to -5.94) HU; P = 0.025) and day 14 (mean difference (95% CI), -74.21 (-133.35 to -15.08) HU; P = 0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.


Asunto(s)
COVID-19 , Humanos , Medicina Tradicional China , Investigación , SARS-CoV-2 , Resultado del Tratamiento
16.
Frontiers of Medicine ; (4): 704-717, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-922499

RESUMEN

We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, P = 0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), -46.39 (-86.83 to -5.94) HU; P = 0.025) and day 14 (mean difference (95% CI), -74.21 (-133.35 to -15.08) HU; P = 0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.


Asunto(s)
Humanos , COVID-19 , Medicina Tradicional China , Investigación , SARS-CoV-2 , Resultado del Tratamiento
17.
J Ethnopharmacol ; 268: 113660, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33276058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shuang-Huang-Lian preparation has captured wide attention since its clinical applications for the successful treatment of upper respiratory tract infection. However, its functional basis under actual therapeutic dose in vivo was still unrevealed. AIM OF THE STUDY: This study aimed to reveal the anti-flu substances and mechanism of Shuang-Huang-Lian water extract (SHL) on H1N1 infected mouse model by a strategy based on serum pharmaco-chemistry under actual therapeutic dose and network pharmacology. MATERIALS AND METHODS: H1N1 infected mouse model was employed for evaluation of the anti-flu effects of SHL. A simultaneous quantification method was developed by UPLC-TQ-XS MS coupled switch-ions mode and applied to characterize the pharmacokinetics of the multiple components of SHL under actual therapeutic dose. The potential active ingredients were screened out based on their pharmacokinetic parameters. And then, a compound mixture of these active candidates was re-evaluated for the anti-flu activity on H1N1 infected mouse model. Furthermore, the anti-flu mechanism of SHL was also predicted by network pharmacology coupled with the experimental result. RESULTS: SHL significantly increased the survival rate and prolonged survival days on H1N1 infected mice at a dosage of 20 g crude drug/kg/day by reversing the increased lung index, down-regulating the inflammatory cytokines (TNF-α, IL-1ß, IL-6) and inhibiting the release of IFN-ß in bronchoalveolar lavage fluids (BALF). Concomitantly, the pharmacokinetic parameters of fourteen quantified and twenty-one semi-quantified constituents of SHL were characterized. And then, five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin), which displayed satisfactory pharmacokinetic features, were considered as potential active ingredients. Thus, a mixture of these five ingredients was administered to H1N1-infected mice at a dose of 4.24 mg/kg/day. As a result, the therapeutical effects of the mixture were similar to SHL in terms of survival rate, lung index and the release of cytokines (TNF-α, IL-1ß and IL-6) in BALF. Moreover, network pharmacology analysis indicated that the TNF-signal pathways might play a role in the anti-flu mechanism of SHL. CONCLUSIONS: A mixture of five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin) were the anti-flu substances of SHL. The strategy based on serum pharmaco-chemistry under actual therapeutic dose provided a new sight on exploring in vivo effective substances of TCM.


Asunto(s)
Descubrimiento de Drogas/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Mapas de Interacción de Proteínas/efectos de los fármacos , Animales , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Mapas de Interacción de Proteínas/fisiología , Agua/farmacología
18.
Anal Bioanal Chem ; 412(26): 7073-7083, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808053

RESUMEN

A model consisting of quantitative fingerprinting integrated with fundamental statistical analysis was established to carry out quality control analysis of Shuang-huang-lian (SHL) oral liquid. The quantitative fingerprinting approach was developed by systematic investigation of the chromatographic condition and optimization of a gradient using a complex sample analysis software system (CSASS). Five pivotal components from three traditional Chinese medicines of SHL oral liquid were determined at dual wavelengths, including phillyrin, baicalin, chlorogenic acid, neochlorogenic acid and cryptochlorogenic acid. Among them, neochlorogenic acid and cryptochlorogenic acid were quantified by quantitative analysis of multi-components with a single marker (QAMS) method. Further, the developed quantitative fingerprinting approach was validated. Good linearity with correlation coefficients (R2) higher than 0.9999 were achieved for phillyrin, baicalin and chlorogenic acid. Recoveries of the three analytes were between 96% and 108%. Relative standard deviation (RSD) values were below 3% regarding the stability and intra-day and inter-day precision. Besides, the feasibility of the QAMS method was verified by an external standard method (ESM) using 18 batches of SHL oral liquid. Fifty-nine batches of SHL oral liquid from nine manufacturers were then analyzed. Effective distinction was realized based on a linear principal component analysis (linear-PCA) model by the combination of the quantitative data and chromatographic fingerprinting. The linear-PCA model based on quantitative chromatographic fingerprinting exhibited great advantage over conventional similarity analysis to distinguish between different samples. The strategy provided a particularly simple and effective approach for quality evaluation of SHL oral liquid from various manufacturers. Graphical abstract.


Asunto(s)
Medicamentos Herbarios Chinos/química , Modelos Estadísticos , Administración Oral , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/normas , Análisis de Componente Principal , Control de Calidad
19.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32737471

RESUMEN

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus , Medicamentos Herbarios Chinos , Flavanonas , Flavonoides , Pandemias , Neumonía Viral , Replicación Viral/efectos de los fármacos , Administración Oral , Animales , Antivirales/química , Antivirales/farmacología , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Pruebas de Enzimas , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Replicación Viral/fisiología
20.
Eur J Integr Med ; 37: 101139, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32501408

RESUMEN

INTRODUCTION: Shuanghuanglian (SHL) oral liquid is a well-known traditional Chinese medicine preparation administered for respiratory tract infections in China. However, the underlying pharmacological mechanisms remain unclear. The present study aims to determine the potential pharmacological mechanisms of SHL oral liquid based on network pharmacology. METHODS: Network pharmacology-based strategy including collection and analysis of putative compounds and target genes, network construction, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology (GO) enrichment, identification of key compounds and target genes, and molecule docking was performed in this study. RESULTS: A total of 82 bioactive compounds and 226 putative target genes of SHL oral liquid were collected. Of note, 28 hub target genes including 4 major hub target genes: estrogen receptor 1 (ESR1), nuclear receptor coactivator 2 (NCOA2), nuclear receptor coactivator 1 (NCOA1), androgen receptor (AR) and 5 key compounds (quercetin, luteolin, baicalein, kaempferol and wogonin) were identified based on network analysis. The hub target genes mainly enriched in pathways including PI3K-Akt signaling pathway, human cytomegalovirus infection, and human papillomavirus infection, which could be the underlying pharmacological mechanisms of SHL oral liquid for treating diseases. Moreover, the key compounds had great molecule docking binding affinity with the major hub target genes. CONCLUSION: Using network pharmacology analysis, SHL oral liquid was found to contain anti-virus, anti-inflammatory, and "multi-compounds and multi-targets" with therapeutic actions. These findings may provide a valuable direction for further clinical application and research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA