Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Nematol ; 56(1): 20240024, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39143958

RESUMEN

Oregon leads the United States in nursery production of shade trees and is third in deciduous and broadleaf evergreen shrub production. Plant-parasitic nematodes have been implicated in problems with the growth of plants in nurseries and are also of phytosanitary risk. A greenhouse experiment was conducted to evaluate the host status of four trees (Quercus alba, Quercus garryana, Acer campestre, Thuja occidentalis) and two shrubs (Buxus sempervirens, Rhododendron catawbiense) to Meloidogyne incognita, Meloidogyne hapla, and Pratylenchus neglectus. Each plant/nematode treatment was replicated five times, and the experiment was conducted twice. Plants were inoculated with 3,000 eggs of M. incognita or M. hapla and 2,500 individuals of P. neglectus two weeks after planting. After three months, the plants were harvested, and the total density of nematodes in soil and roots for P. neglectus and the total density of second-stage juveniles (J2) in soil and eggs on roots for M. hapla and M. incognita were determined. The final nematode population (Pf) and reproductive factor (RF = Pf/initial population density) were calculated. For M. incognita and M. hapla, all of the ornamental trees and shrubs would be considered as fair to good hosts with RF values > 1. Meloidogyne incognita had the highest Pf (5,234 total J2 and eggs/pot) and RF value (28.4) on A. campestre. For P. neglectus, all of the ornamental trees and shrubs were fair to good hosts, except for B. sempervirens. Buxus sermpervirens was not a host for P. neglectus, with an RF value of almost 0. This is the first report of Q. alba, Q. garryana, and A. campestre as hosts for M. incognita, M. hapla, and P. penetrans. This is also the first report of T. occidentalis and R. catawbiense as hosts for P. penetrans and the non-host status of B. sermpervirens for P. penetrans.

2.
Sci Total Environ ; 948: 174891, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047817

RESUMEN

Climate warming is altering snowpack permanence in alpine tundra, modifying shrub growth and distribution. Plant acclimation to snowpack changes depends on the capability to guarantee growth and carbon storage, suggesting that the content of non-structural carbohydrates (NSC) in plant organs can be a key trait to depict the plant response under different snow regimes. To test this hypothesis, we designed a 3-years long manipulative experiment aimed at evaluating the effect of snow melt timing (i.e., early, control, and late) on NSC content in needles, bark and wood of Juniperus communis L. growing at high elevation in the Alps. Starch evidenced a general decrease from late spring to summer in control and early melting, while starch was low but stable in plants subjected to a late snow melt. Leaves, bark and wood have different level of soluble NSC changing during growing season: in bark, sugars content decreased significantly in late summer, while there was no seasonal effect in needles and wood. Soluble NSC and starch were differently related with the plant growth, when considering different tissues and snow treatment. In leaf and bark we observed a starch depletion in control and early melting plants, consistently to a higher growth (i.e., twig elongation), while in late snow melt, we did not find any significant relationship between growth and NSC concentration. Our findings confirmed that snowpack duration affects the onset of the growing season promoting a change in carbon allocation in plant organs and, between bark and wood in twigs. Finally, our results suggest that plants, at this elevation, could take advantage from an early snow melt caused by climate warming, most likely due to photosynthetic activity by maintaining the level of reserves and enhancing the carbon investment for growth.


Asunto(s)
Juniperus , Nieve , Tundra , Juniperus/crecimiento & desarrollo , Juniperus/fisiología , Estaciones del Año , Carbohidratos/análisis , Cambio Climático
3.
Ecol Evol ; 14(7): e11690, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39026952

RESUMEN

Despite their claimed low intraspecific variability, plant reproductive traits are less frequently used in functional ecology. Here we focused on underrepresented plant organs, i.e. flowers and fruits, by comparing their traits with well-established leaf traits. We evaluated 16 functional traits (six floral, six fruit, and four leaf traits) in a randomly selected group of woody species under comparable environmental conditions. We aimed to assess interspecific and intraspecimen variability and explore the potential of the proposed flower and fruit traits for ecological research. Traits related to the dry mass of flowers and fruits exhibited the highest interspecific variability, while carbon content traits in flowers and leaves had the lowest. At a specimen level, specific leaf area revealed the highest variation. Carbon content traits for all organs demonstrated the least intraspecimen variability, with flower carbon content being the least variable. Our study revealed connections between the newly proposed traits and widely recognized functional traits, uncovering intriguing links between the established traits and the floral and fruit traits upon which we focused. This complements the already well-recognized variability in plant form and function with additional insights into reproductive processes.

4.
Plants (Basel) ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891256

RESUMEN

Biostimulants and other plant growth promoters can provide an effective solution to the challenge of urbanisation and climate change. Viburnum opulus 'Roseum' is a globally popular deciduous shrub species that can be made more resistant to urban influences by using natural growth-promoting substances. In our study, we investigated the effects of growth promoters Kelpak®, Bistep and Yeald Plus on the species, both histologically and physiologically (proline stress hormone measurement). Our measurements were complemented using the analysis of rhizosphere alkaline phosphatase, ß-glucosidase and ß-glucosaminidase enzymes, to obtain a more complete picture of the combined effect of biostimulants and species. We found that the Bistep biostimulant had an outstanding effect on the leaf tissue culture results of the variety. The transpiration and evapotranspiration findings also confirmed the efficacy of biostimulants. In the case of POD activity and rhizosphere enzyme measurements, Bistep and Yeald Plus obtained statistically higher values than the control group. Kelpak produced better results than the control group in several measurements (alkaline phosphatase levels; evapotranspiration results), but in other cases it resulted in lower values than the control treatment. The use of Bistep and Yeald Plus can greatly assist growers in the cultivation of V. opulus 'Roseum' in an urban environment.

5.
Int J Biometeorol ; 68(8): 1663-1673, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714612

RESUMEN

The timing and duration of autumn leaf phenology marks important transitions in temperate deciduous forests, such as, start of senescence, declining productivity and changing nutrient cycling. Phenological research on temperate deciduous forests typically focuses on upper canopy trees, overlooking the contribution of other plant functional groups like shrubs. Yet shrubs tend to remain green longer than trees, while non-native shrubs, in particular, tend to exhibit an extended growing season that confers a competitive advantage over native shrubs. We monitored leaf senescence and leaf fall (2017-2020) of trees and shrubs (native and non-native) in an urban woodland fragment in Wisconsin, USA. Our findings revealed that, the start of leaf senescence did not differ significantly between vegetation groups, but leaf fall started (DOY 273) two weeks later in shrubs. Non-native shrubs exhibited a considerably delayed start (DOY 262) and end of leaf senescence (DOY 300), with leaf-fall ending (DOY 315) nearly four weeks later than native shrubs and trees. Overall, the duration of the autumn phenological season was longer for non-native shrubs than either native shrubs or trees. Comparison of the timing of spring phenophases with the start and end of leaf senescence revealed that when spring phenology in trees starts later in the season senescence also starts later and ends earlier. The opposite pattern was observed in native shrubs. In conclusion, understanding the contributions of plant functional groups to overall forest phenology requires future investigation to ensure accurate predictions of future ecosystem productivity and help address discrepancies with remote sensing phenometrics.


Asunto(s)
Hojas de la Planta , Estaciones del Año , Árboles , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Árboles/crecimiento & desarrollo , Wisconsin , Especies Introducidas , Bosques
6.
Sci Rep ; 14(1): 8958, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637667

RESUMEN

Dominant vegetation in many ecosystems is an integral component of structure and habitat. In many drylands, native shrubs function as foundation species that benefit other plants and animals. However, invasive exotic plant species can comprise a significant proportion of the vegetation. In Central California drylands, the facilitative shrub Ephedra californica and the invasive Bromus rubens are widely dispersed and common. Using comprehensive survey data structured by shrub and open gaps for the region, we compared network structure with and without this native shrub canopy and with and without the invasive brome. The presence of the invasive brome profoundly shifted the network measure of centrality in the microsites structured by a shrub canopy (centrality scores increased from 4.3 under shrubs without brome to 6.3, i.e. a relative increase of 42%). This strongly suggests that plant species such as brome can undermine the positive and stabilizing effects of native foundation plant species provided by shrubs in drylands by changing the frequency that the remaining species connect to one another. The net proportion of positive and negative associations was consistent across all microsites (approximately 50% with a total of 14% non-random co-occurrences on average) suggesting that these plant-plant networks are rewired but not more negative. Maintaining resilience in biodiversity thus needs to capitalize on protecting native shrubs whilst also controlling invasive grass species particularly when associated with shrubs.


Asunto(s)
Bromus , Ecosistema , Plantas , Biodiversidad , Especies Introducidas , California
7.
Ann Bot ; 134(1): 101-116, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38488820

RESUMEN

BACKGROUND AND AIMS: Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs. METHODS: We used a novel common garden approach that reduced within-family genetic variation in both the maternal and offspring generations by growing the same maternal individual in two contrasting watering environments, well-watered and drought, in consecutive years. We then assessed phenotypic differences at the reproductive stage between offspring reciprocally grown in the same environments. KEY RESULTS: Maternal drought had an effect on offspring performance only in Helianthemum squamatum. Offspring of drought-stressed plants showed more inflorescences, less sclerophyllous leaves and higher growth rates in both watering conditions, and heavier seeds under drought, than offspring of well-watered maternal plants. Maternal drought also induced similar plasticity patterns across maternal families, showing a general increase in seed mass in response to offspring drought, a pattern not observed in the offspring of well-watered plants. In contrast, both species expressed immediate adaptive plasticity, and the magnitude of intragenerational plasticity was larger than the transgenerational plastic responses. CONCLUSIONS: Our results highlight that adaptive effects associated with maternal drought can persist beyond the seedling stage and provide evidence of species-level variation in the expression of transgenerational plasticity. Such differences between co-occurring Mediterranean species in the prevalence of this form of non-genetic inheritance may result in differential vulnerability to climate change.


Asunto(s)
Adaptación Fisiológica , Sequías , Adaptación Fisiológica/genética , Fenotipo , Región Mediterránea , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Variación Genética
8.
Int J Biometeorol ; 68(5): 871-882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311643

RESUMEN

Phenological research in temperate-deciduous forests typically focuses on upper canopy trees, due to their overwhelming influence on ecosystem productivity and function. However, considering that shrubs leaf out earlier and remain green longer than trees, they play a pivotal role in ecosystem productivity, particularly at growing season extremes. Furthermore, an extended growing season of non-native shrubs provides a competitive advantage over natives. Here, we report spring phenology, budburst, leaf-out, and full-leaf unfolded (2017-2021) of a range of co-occurring species of tree (ash, American basswood, red oak, white oak, and boxelder) and shrub (native species: chokecherry, pagoda dogwood, nannyberry, American wild currant and Eastern wahoo, and non-native species: buckthorn, honeysuckle, European privet, and European highbush cranberry) in an urban woodland fragment in Wisconsin, USA, to determine how phenology differed between plant groups. Our findings show that all three spring phenophases of shrubs were 3 weeks earlier (p < 0.05) than trees. However, differences between shrubs groups were only significant for the later phenophase; full-leaf unfolded, which was 6 days earlier (p < 0.05) for native shrubs. The duration of the spring phenological season was 2 weeks longer (p < 0.05) for shrubs than trees. These preliminary findings demonstrate that native shrubs, at this site, start full-leaf development earlier than non-native species suggesting that species composition must be considered when generalizing whether phenologies differ between vegetation groups. A longer time series would be necessary to determine future implications on ecosystem phenology and productivity and how this might impact forests in the future, in terms of species composition, carbon sequestration, and overall ecosystem dynamics.


Asunto(s)
Estaciones del Año , Árboles , Árboles/crecimiento & desarrollo , Wisconsin , Hojas de la Planta/crecimiento & desarrollo , Especies Introducidas , Bosques , Ciudades
9.
Sci Total Environ ; 916: 169896, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185160

RESUMEN

Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.


Asunto(s)
Nieve , Suelo , Humanos , Groenlandia , Regiones Árticas , Xilema/fisiología
10.
Environ Sci Pollut Res Int ; 31(8): 12257-12270, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38227262

RESUMEN

Although the abundance, survival, and pollination performance of honeybees are sensitive to changes in habitat and climate conditions, the processes by which these effects are transmitted to honey production and interact with beekeeping management are not completely understood. Climate change, habitat degradation, and beekeeping management affect honey yields, and may also interact among themselves resulting in indirect effects across spatial scales. We conducted a 2-year, multi-scale study on Chiloe Island (northern Patagonia), where we evaluated the most relevant environmental and management drivers of honey produced by stationary beekeepers. We found that the effects of microclimate, habitat, and management variables changed with the spatial scale. Among the environmental variables, minimum temperature, and cover of the invasive shrub, gorse (Ulex europaeus) had the strongest detrimental impacts on honey production at spatial scales finer than 4 km. Specialized beekeepers who adopted conventional beekeeping and had more mother colonies were more productive. Mean and minimum temperatures interacted with the percentage of mother colonies, urban cover, and beekeeping income. The gorse cover increased by the combination of high temperatures and the expansion of urban lands, while landscape attributes, such as Eucalyptus plantation cover, influenced beekeeping management. Results suggest that higher temperatures change the available forage or cause thermal stress to honeybees, while invasive shrubs are indicators of degraded habitats. Climate change and habitat degradation are two interrelated environmental phenomena whose effects on beekeeping can be mitigated through adaptive management and habitat restoration.


Asunto(s)
Miel , Abejas , Animales , Miel/análisis , Microclima , Apicultura/métodos , Ecosistema , Polinización
11.
AoB Plants ; 15(5): plad064, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37899974

RESUMEN

In recent years, xylem sap composition has been shown to affect xylem hydraulics. However, information on how much xylem sap composition can vary across seasons and specifically under drought stress is still limited. We measured xylem sap chemical composition ([Ca2+], [K+], [Na+], electrical conductivity EC and pH) and surface tension (γ) of six Australian angiosperm trees and shrubs over 1 year, which comprised of exceptional dry and wet periods. Percentage losses of hydraulic conductivity and predawn leaf water potential were also monitored. In all species, measured parameters changed considerably over the annual time course. Ions and pH tended to decrease during winter months whereas γ showed a slight increase. No clear correlation was found between sap and hydraulic parameters, except for pH that was higher when plants suffered higher drought stress levels. Results indicate xylem sap composition to be complex and dynamic, where most variation in its composition seems to be dictated by season, even under severe dry conditions. However, pH might play a role as signals of drought stress.

12.
J Environ Manage ; 347: 119091, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793288

RESUMEN

Canopy interception loss affects the local water budget by removing a non-negligible proportion of rainfall from the terrestrial surface. Thus, quantifying interception loss is essential for thoroughly understanding the role of vegetation in the local hydrological cycle, especially in dryland ecosystems. However, sparse shrubs in dryland ecosystems have not been sufficiently studied, owing to time- and labor-intensive field experiments and challenging model parameterization. In this work, 4-year growing season field experiments on rainfall partitioning were conducted for three dominant shrub species (Haloxylon ammodendron, Nitraria sphaerocarpa, and Calligonum mongolicum) in an oasis-desert ecotone in northwestern China. The revised Gash analytical model was well parameterized, which reliably simulated the cumulative interception loss for sparse shrubs, and the validated model performed better for H. ammodendron, followed by C. mongolicum and N. sphaerocarpa, with relative errors of 8.4%, 15.4%, and 23.9%, respectively. The mean individual interception loss percentage for H. ammodendron (28.4%) was significantly higher than that for C. mongolicum (11.0%) and N. sphaerocarpa (10.9%) (p < 0.05), which could be ascribed to the higher canopy storage capacity and wet-canopy evaporation rate of H. ammodendron. For all shrub species, the majority proportion of interception loss occurred during canopy saturation and drying-out periods, accounting for approximately 79-85% of the cumulative interception loss. Overall, the mean local interception loss of three dominant shrub species in the ecotone removed nearly 17% of the corresponding cumulative rainfall during the growing season. These results not only provide methodological references for estimating the interception loss of sparse vegetation in dryland ecosystems, but also provide scientific insights for water resource management and ecosystem restoration in water-limited regions similar to the experimental site.


Asunto(s)
Chenopodiaceae , Fabaceae , Ecosistema , Lluvia , Movimientos del Agua , Agua
13.
Sci Total Environ ; 905: 167381, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37769738

RESUMEN

Rapidly increasing temperatures in high-latitude regions are causing major changes in wetland ecosystems. To assess the impact of concomitant hydroclimatic fluctuations, mineral deposition, and autogenous succession on the rate and direction of changing arctic plant communities in Arctic Alaska, we conducted detailed palaeoecological analyses using plant macrofossil, pollen, testate amoebae, elemental analyses, and radiocarbon and lead (210Pb) dating on two replicate monoliths from a peatland that developed in a river valley on the northern foothills of the Books Range. We observed an expansion of Sphagnum populations and vascular plants preferring dry habitats, such as Sphagnum warnstorfii, Sphagnum teres/squarrosum, Polytrichum strictum, Aulacomnium palustre and Salix sp., in recent decades between 2000 and 2015 CE, triggered by an increase in temperature and deepening water tables. Deepening peatland water tables became accentuated over the last two decades, when it reached its lowest point in the last 700 years. Conversely, a higher water-table between ca. 1500 and 1950 CE led to a recession of Sphagnum communities and an expansion of sedges. The almost continuous supply of mineral matter during this time led to a dominance of minerotrophic plant communities, although with varying species composition throughout the study period. The replicate cores show similar patterns, but nuanced differences are also visible, depicting fine spatial scale differences particularly in peat-forming plant distribution and the different timings of their presence. In conclusion, our study provides valuable insights into the impact of hydroclimatic fluctuations on peatland vegetation in Arctic Alaska, highlighting their tendency to dry out in recent decades. It also highlights the importance of river valley peatlands in paleoenvironmental reconstructions.


Asunto(s)
Ecosistema , Sphagnopsida , Humedales , Ambiente , Suelo , Plantas , Minerales
14.
Plants (Basel) ; 12(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37653939

RESUMEN

The native flora of different Mediterranean countries, often woody species, was widely recognized for its ornamental potential. The shrubs, in particular, are a typology of plants very widespread in the Mediterranean environment and constituent the 'Macchia', the typical vegetation of this ecosystem. The use of native shrubs for the realization of ornamental green areas has been recently examined for their adaptability to abiotic stress. Abiotic stresses, in fact, are the major limiting growth factor in urban and peri-urban areas. The identification and use of tolerant ornamental species allow the reduction of management costs and preserve the aesthetical value of green areas. Tolerance to drought stress, for instance, in the Mediterranean climate can improve the ecosystem services of these plants in the urban environment. In this review, the possibility to early individuate different plant species' mechanisms to tolerate or avoid the stresses is analysed, as well as the possibility to increase abiotic stress tolerance through genetic and agronomic strategies. The exploration of wild or spontaneous species can be a good source for selecting tolerant plants to be used as ornamental plants in urban areas. Among agronomic strategies, biostimulants, mulching, and plant combination can provide a useful solution to counteract abiotic stress in the urban environment.

15.
Ecol Evol ; 13(9): e10542, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37732286

RESUMEN

Experimental warming of an ombrotrophic bog in northern Minnesota has caused a rapid decline in the productivity and areal cover of Sphagnum mosses, affecting whole-ecosystem carbon balance and biogeochemistry. Direct effects of elevated temperature and the attendant drying are most likely the primary cause of the effects on Sphagnum, but there may also be responses to the increased shading from shrubs, which increased with increasing temperature. To evaluate the independent effects of reduction in light availability and deposition of shrub litter on Sphagnum productivity, small plots with shrubs removed were laid out adjacent to the warming experiment on hummocks and hollows in three blocks and with five levels of shading. Four plots were covered with neutral density shade cloth to simulate shading from shrubs of 30%-90% reduction in light; one plot was left open. Growth of Sphagnum angustifolium/fallax and S. divinum declined linearly with increasing shade in hollows, but there was no response to shade on hummocks, where higher irradiance in the open plots may have been inhibitory. Shading caused etiolation of Sphagnum-they were thin and spindly under the deepest shade. A dense mat of shrub litter, corresponding to the amount of shrub litter produced in response to warming, did not inhibit Sphagnum growth or cause increases in potentially toxic base cations. CO2 exchange and chlorophyll-a fluorescence of S. angustifolium/fallax from the 30% and 90% shade cloth plots were measured in the laboratory. Light response curves indicate that maximal light saturated photosynthesis was 42% greater for S. angustifolium/fallax grown under 30% shade cloth relative to plants grown under 90% shade cloth. The response of Sphagnum growth in response to increasing shade is consistent with the hypothesis that increased shade resulting from shrub expansion in response to experimental warming contributed to reduced Sphagnum growth.

16.
Sci Total Environ ; 902: 165911, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549708

RESUMEN

Increasing mean global temperatures in conjunction with increases in the frequency and severity of drought events affect plant growth and physiology, particularly in more arid and mountainous ecosystems. Thus, it is imperative to understand the response of plant growth to climatic oscillations in these regions. This study used dendrochronological and wood anatomical traits of two shrub species growing over 1500 m.a.s.l. in the Serra da Estrela (Portugal), Juniperus communis and Cytisus oromediterraneus, to analyze their response to temperature and water availability parameters. Results showed an increase in shrub growth related to the increase over time of the mean minimum and maximum monthly temperature in Serra da Estrela. Warming seems to promote shrub growth because it lengthens the growing season, although J. communis responds mainly to spring maximum temperature while C. oromediterraneus is influenced by fall maximum temperature. Hydraulic traits of J. communis and C. oromediterraneus were negatively influenced by winter drought. Additionally, there were species-specific differences in response to changes in water availability. J. communis radial growth was significantly affected by spring drought conditions, while C. oromediterraneus radial growth was significantly affected by spring precipitation. C. oromediterraneus hydraulic traits were also significantly affected by drought conditions from the previous spring and fall. This study shed light on specific differences in the response to climate between two co-occurring shrub species in the top of an understudied Mediterranean mountain, which could have implications in the future distribution of woody species within this region.


Asunto(s)
Ecosistema , Juniperus , Temperatura , Estaciones del Año , Sequías , Agua , Cambio Climático
17.
Plants (Basel) ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447025

RESUMEN

Desert shrubs are keystone species for plant diversity and ecosystem function. Atriplex clivicola and Atriplex deserticola (Amaranthaceae) are native shrubs from the Atacama Desert that show contrasting altitudinal distribution (A. clivicola: 0-700 m.a.s.l.; A. deserticola: 1500-3000 m.a.s.l.). Both species possess a C4 photosynthetic pathway and Kranz anatomy, traits adaptive to high temperatures. Historical records and projections for the near future show trends in increasing air temperature and frequency of heat wave events in these species' habitats. Besides sharing a C4 pathway, it is not clear how their leaf-level physiological traits associated with photosynthesis and water relations respond to heat stress. We studied their physiological traits (gas exchange, chlorophyll fluorescence, water status) before and after a simulated heat wave (HW). Both species enhanced their intrinsic water use efficiency after HW but via different mechanisms. A. clivicola, which has a higher LMA than A. deserticola, enhances water saving by closing stomata and maintaining RWC (%) and leaf Ψmd potential at similar values to those measured before HW. After HW, A. deserticola showed an increase of Amax without concurrent changes in gs and a significant reduction of RWC and Ψmd. A. deserticola showed higher values of Chla fluorescence after HW. Thus, under heat stress, A. clivicola maximizes water saving, whilst A. deserticola enhances its photosynthetic performance. These contrasting (eco)physiological strategies are consistent with the adaptation of each species to their local environmental conditions at different altitudes.

18.
Front Plant Sci ; 14: 1183918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448865

RESUMEN

In tropical and subtropical regions, much research is still required to explore the dendrochronological potential of their trees. This study aims to evaluate the anatomical structure and dendrochronological potential of three Mediterranean desert shrubs in Egypt (Lycium schweinfurthii var. schweinfurthii, L. europaeum, and Calligonum polygonoides subsp. comosum) supported by X-ray density. The results showed that the target species had distinct growth rings at macroscopic and microscopic levels. The vessel traits reflected the adaptability of each species with the prevailing arid climate conditions. After the exclusion of the non-correlated series, we obtained three site chronologies that cover the years 2013-2022 for L. schweinfurthii, 2012-2022 for L. europaeum, and 2011-2022 for C. comosum. The mean series intercorrelation was 0.746, 0.564, and 0.683 for L. schweinfurthii, L. europaeum, and C. comosum, respectively. The EPS (expressed population signal) values ranged from 0.72 to 0.80, while the SNR (species-to-noise ratio) ranged from 9.1 to 21.5. Compiling all series of L. schweinfurthii raised the EPS value to 0.86. The chronologies developed for the studied species were relatively short since we dealt with multi-stemmed shrubs. The average percentage difference between latewood density (LWD) and earlywood density (EWD) in C. comosum, L. europaeum, and L. schweinfurthii were 11.8% ± 5.5, 5.2%± 1.87, and 3.6% ± 1.86, respectively. X-ray densitometry helped in the precise determination of the ring borders of the studied species. The relationships between the radial growth of the studied species and the climate variables were weak to moderate but mostly not significant (i.e., r < 0.7). Generally, the radial growth of the target species had a weak to moderate positive correlation with temperature and precipitation during the wet season (winter), while negatively correlated with temperature for the rest of the year, particularly in summer. Our data agrees with earlier findings that ring formation starts at the beginning of the long vegetative stage, then the rest of the assimilated carbohydrates are directed to the flowering and fruiting at the end of the vegetative stages. For more efficient dendrochronological studies on subtropical and Mediterranean trees, we recommend carrying out xylogenesis studies, collection of phenological data, sampling 45-80 trees per species, using new techniques, and choosing homogeneous and close sites for wood sampling.

19.
Ecol Evol ; 13(7): e10245, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37424931

RESUMEN

Vegetation loss is a primary cause of habitat degradation and results in a decline in reptile species abundance due to loss of refuge from predators and hot temperatures, and foraging opportunities. Texas horned lizards (Phrynosoma cornutum) have disappeared from many areas in Texas, especially from urbanized areas, probably in large part due to loss of suitable habitat. This species still occurs in some small towns in Texas that still contain suitable habitat. Long-term data from Kenedy and Karnes City, Texas indicate that when study sites experienced significant shrub and vegetation removal horned lizards declined by 79%. We hypothesize the decline was due to the degradation of the thermal landscape for these lizards. We determined the preferred temperature range (T set25 - T set75) of lizards at our study sites and took field measurements of body temperature (T b). Temperature loggers were also placed in three microhabitats across our study sites. Shrubs and vegetation provided the highest quality thermal environment, especially for about 5 h midday when temperatures in the open and buried under the surface in the open exceeded the lizards' critical maximum temperature (CTmax) or were above their preferred temperature range. Horned lizard density was positively related to the thermal quality of the habitat across our sites. Texas horned lizards in these towns require a heterogeneous mix of closely spaced microhabitats and especially thermal refugia, such as shrubs and vegetation along fence lines and in open fields. Maintaining thermal refugia is one of the most important and practical conservation actions that can be taken to help small ectotherms persist in modified human landscapes and cope with increasing temperatures due to climate change.

20.
Heliyon ; 9(6): e17127, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484391

RESUMEN

Almost all habitats on the planet are home to birds, from the lowest deserts to the highest mountains. Birds have proved to be excellent indicators of biodiversity or productivity as they are easily observed and are relatively well known compared to other animals. Although bird species are distributed across the globe, habitat destruction, fragmentation, and loss have adversely affected their survival and distribution. Therefore, this study is an attempt to prepare a baseline data on avifaunal diversity with their relative abundance and species richness in different habitats within Lewi Mountain Awi zone, Ethiopia from December 2018 to October 2020, including both the wet and dry seasons. The sampling sites were stratified based on land cover features, and transect count techniques were employed. The data were summarized per season and habitat type in the excel spreadsheet throughout the study period. In this study, one-way ANOVA was used to determine the effect of habitat type on species diversity and abundance. T-tests are also use to analyze bird populations among seasons. A total of 1591 individuals, 56 bird species belonging to 29 families and 12 orders were identified during the two seasons. The Wetland habitat had the highest species diversity index (H' = 3) with high evenness index (J = 0.88) during the dry season followed by the open shrubs habitat (H' = 2.97) with the highest evenness index (J = 0.95). The settlement had the lowest species diversity (H' = 2.17) and the lowest evenness index (J = 0.8) in the same season. During the wet season, disturbed forests recorded the highest Shannon-Weiner diversity index (H' = 3.2) with the highest evenness (J = 0.92) followed by Wetland habitat (H' = 2.97) with high evenness index (J = 0.87). During dry and wet seasons, the abundance of birds' species in different habitat types did not differ significantly (F = 1.91, p = 0.193, dƒ = 3) and (F = 1.579, p = 0.199, dƒ = 3), respectively. From all studied habitats, the overall mean abundance of bird species between dry and wet seasons was significantly different (F = 3642, P ≤ 0.001, dƒ = 1). In conclusion, settlement had the lowest species diversity and the lowest evenness index in the research area for the entire season. The habitats are important to the conservation of birds, so good habitat management is required, such as minimizing agricultural expansion and overgrazing, demarcating the forest habitats for wild species only, and creating awareness among local communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA