Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
1.
Pancreatology ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39256134

RESUMEN

BACKGROUND: The incidence of pancreatic cancer is on the rise, and its prognosis remains poor. Recent reports have established a link between the gut and oral microbiome and pancreatic cancer. However, the intricacies of this association within the Japanese population remain unclear. In this study, we investigated the gut and oral microbiomes of Japanese patients with pancreatic cancer, comparing them with those of healthy individuals. METHODS: We recruited 30 patients with untreated pancreatic cancer and 18 healthy controls at Kyoto University Hospital (2018-2022). We performed a comprehensive 16S rRNA gene sequencing to analyze their gut and oral microbiomes. RESULTS: Analysis revealed that the diversity of the gut and oral microbiomes of patients with pancreatic cancer was reduced compared to that of the healthy controls. Specifically, we observed an increase in the genus Streptococcus in both the gut and oral microbiomes and a significant decrease in several butyrate-producing bacteria in fecal samples. Moreover, bacteria such as Streptococcus mitis and Holdemanella biformis were present in pancreatic cancer tissues, suggesting that they might influence the carcinogenesis and progression of pancreatic cancer. CONCLUSIONS: The gut and oral microbiome differed between patients with pancreatic cancer and healthy controls, with a notable decrease in butyrate-producing bacteria in the gut microbiome of the patients. This suggests that there may be a distinct microbial signature associated with pancreatic cancer in the Japanese population. Further studies are required to elucidate the microbiome's causal role in this cancer and help develop prognostic markers or targeted therapies.

2.
Front Immunol ; 15: 1387903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234241

RESUMEN

The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.


Asunto(s)
Microbioma Gastrointestinal , Oxidación-Reducción , Humanos , Microbioma Gastrointestinal/inmunología , Animales , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Int J Biol Macromol ; 279(Pt 3): 135383, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245125

RESUMEN

The aim of this study was to extract water-soluble dietary fibers (WSDFskin), pectin (PECskin), and xyloglucan (XGskin) from hazelnut skin and to determine their impacts on colonic microbiota and metabolic function. WSDFskin, PECskin, and XGskin were extracted by water, acid, and alkali treatments, respectively. Monosaccharide analysis revealed WSDFskin and PECskin were dominated by uronic acids, while the XGskin was found to contain xyloglucan- and pectin-associated sugars. In vitro fecal fermentation analysis showed that WSDFskin, PECskin, and XGskin are fermented to different microbial short-chain fatty acid profiles by identical microbiota. 16S rRNA sequencing demonstrated that PECskin promoted Faecalibacterium prausnitzii and Lachnospiraceae related operational taxonomic units (OTUs), which are recognized as beneficial members of the human gut, whereas WSDFskin and XGskin stimulated Bacteroides OTUs. Interestingly, increased abundances of F. prausnitzii and Lachnospiraceae OTUs in PECskin were higher than those in commercially available pectin. Finally, PECskin and XGskin were tested in a biscuit model and the results showed that either PECskin or XGskin can be incorporated into biscuit formulations without impacting physical, textural, and sensory properties of the final product. Overall, our results demonstrated that hazelnut skin, an industrial byproduct, can be utilized for the production of functional dietary fibers, especially pectin, to improve colonic health.

4.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273367

RESUMEN

Alcoholic liver disease (ALD) is a globally prevalent form of liver disease for which there is no effective treatment. Recent studies have found that a significant decrease in butyrate was closely associated with ALD development. Given the low compliance and delivery efficiency associated with oral-route butyrate administration, a highly effective butyrate-yielding dietary supplement, butyrylated high-amylose maize starch (HAMSB), is a good alternative approach. Here, we synthesized HAMSB, evaluated the effect of HAMSB on acute ALD in mice, compared its effect with that of oral administration of butyrate, and further studied the potential mechanism of action. The results showed HAMSB alleviated acute ALD in mice, as evidenced by the inhibition of hepatic-function impairment and the improvement in liver steatosis and lipid metabolism; in these respects, HAMSB supplementation was superior to oral sodium butyrate administration. These improvements can be attributed to the reduction of oxidative stress though the regulation of Nrf2-mediated antioxidant signaling in the liver and the improvement in the composition and function of microbiota in the intestine. In conclusion, HAMSB is a safe and effective dietary supplement for preventing acute ALD that could be useful as a disease-modifying functional food or candidate medicine.


Asunto(s)
Butiratos , Suplementos Dietéticos , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Hígado , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Hepatopatías Alcohólicas/prevención & control , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/microbiología , Hígado/metabolismo , Hígado/efectos de los fármacos , Butiratos/farmacología , Masculino , Ratones Endogámicos C57BL , Antioxidantes/farmacología , Ácido Butírico/farmacología
5.
Nutrients ; 16(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275295

RESUMEN

Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6-8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut-liver-brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1ß and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain.


Asunto(s)
Fructosa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Oryza , Ovariectomía , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Ratones , Enfermedades Neuroinflamatorias , Fibras de la Dieta/farmacología , Fibras de la Dieta/administración & dosificación , Ácidos Grasos Volátiles/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Galactosa , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
6.
Transl Pediatr ; 13(8): 1312-1326, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39263295

RESUMEN

Background: Early enteral nutrition and the gut microbiota profoundly influence neonatal brain development, with short-chain fatty acids (SCFAs) from the microbiota playing a pivotal role. Understanding the relationship between dysbiosis, SCFAs, and brain development is crucial. In this study, we investigated the impact of antibiotics on the concentration of SCFAs in neonatal feces. Additionally, we developed a model of gut dysbiosis in neonatal mice to examine the potential relationship between this imbalance, SCFAs production, and brain function development. Methods: We measured the SCFAs content in the feces of two groups of neonates, categorized based on whether antibiotics were used, and conducted the Neonatal Behavioral Neurological Assessment (NBNA) test on all neonates. Then we evaluated fecal SCFAs levels in neonates and neonatal mice post-antibiotic treatment using liquid chromatography-mass spectrometry (LC-MS) analysis. Morris water maze (MWM) tests assessed behavioral performance, and western blot analysis examined brain tissue-related proteins-neuron-specific enolase (NSE), ionized calcium binding adaptor molecule-1 (IBA1), and myelin basic proteins (MBP). Results: The use of antibiotics did not affect the NBNA scores of the two groups of neonates, but it did reduce the SCFAs content in their feces. Antibiotic administration induced gut dysbiosis in mice, resulting in decreased IBA1 and MBP expression. Interventions to restore gut microbiota ameliorated these effects. Mice with dysbiosis displayed cognitive deficits in the MWM test. SCFAs levels decreased during dysbiosis, and increased upon microbiota recovery. Conclusions: Neonatal dysbiosis affects the microbiota-gut-brain axis, impairing cognitive function and nervous system development. Reduced SCFAs may contribute significantly to these alterations.

7.
Sci Rep ; 14(1): 21552, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285240

RESUMEN

Intestinal microbiota imbalance plays an important role in the progression of obstructive sleep apnea (OSA), and is considered to be the main mediator that triggers metabolic comorbidities. Here, we analyzed the changes in intestinal microbiota in patients with different severities of OSA based on apnea hypopnea index (AHI) classification, and explored the role of intestinal microbiota in the severity of OSA. This study included 19 healthy volunteers and 45 patients with OSA [5 ≤ AHI < 15 (n = 14), 15 ≤ AHI < 30 (n = 13), AHI ≥ 30 (n = 18)]. Relevant sleep monitoring data and medical history data were collected, and microbial composition was analyzed using 16S rRNA high-throughput sequencing technology. The diversity analysis of intestinal microbiota among different groups of people was conducted, including alpha diversity, beta diversity, species diversity, and marker species as well as differential functional metabolic pathway prediction analysis. With the increase of AHI classification, the alpha diversity in patients with OSA significantly decreased. The results revealed that the severity of OSA is associated with differences in the structure and composition of the intestinal microbiota. The abundance of bacteria producing short-chain fatty acids (such as Bacteroides, Ruminococcacea, and Faecalibacterium) in severe OSA is significantly reduced and a higher ratio of Firmicutes to Bacteroidetes. Random forest analysis showed that Parabacteroides was a biomarker genus with important discriminatory significance. The differential metabolic pathway prediction function shows that the main function of maintaining intestinal microbiota homeostasis is biosynthetic function. Our results show that the differences in the composition of intestinal microbiota in patients with different severities of OSA are mainly related to short-chain fatty acid-producing bacteria. These changes may play a pathological role in OSA combined with metabolic comorbidities.


Asunto(s)
Microbioma Gastrointestinal , ARN Ribosómico 16S , Apnea Obstructiva del Sueño , Humanos , Microbioma Gastrointestinal/genética , Apnea Obstructiva del Sueño/microbiología , Masculino , Persona de Mediana Edad , Femenino , Adulto , ARN Ribosómico 16S/genética , Índice de Severidad de la Enfermedad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , Heces/microbiología
8.
Anim Nutr ; 18: 322-339, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290857

RESUMEN

Short chain fatty acids (SCFA) exist in dietary foods and are produced by the fermentation of gut microbiota, and are considered an important element for regulating host health. Through blood circulation, SCFA produced in the gut and obtained from foods have an impact on the intestinal health as well as vital organs of the host. It has been recognized that the gut is the "vital organ" in the host. As the gut microbial metabolites, SCFA could create an "axis" connecting the gut and to other organs. Therefore, the "gut-organ axes" have become a focus of research in recent years to analyze organism health. In this review, we summarized the sources, absorption properties, and the function of SCFA in both gut and other peripheral tissues (brain, kidney, liver, lung, bone and cardiovascular) in the way of "gut-organ axes". Short chain fatty acids exert both beneficial and pathological role in gut and other organs in various ways, in which the beneficial effects are more pronounced. In addition, the beneficial effects are reflected in both preventive and therapeutic effects. More importantly, the mechanisms behinds the gut and other tissues provided insight into the function of SCFA, assisting in the development of novel preventive and therapeutic strategies for maintaining the host health.

9.
J Agric Food Chem ; 72(33): 18682-18696, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39135376

RESUMEN

Ochratoxin A (OTA) is a prevalent mycotoxin found in feed that causes significant kidney injury in animals. Further investigation was needed to devise strategies for treating OTA-induced kidney damage through the gut-kidney axis. Evidence indicates the crucial role of intestinal microbiota in kidney damage development. Inulin, a dietary fiber, protects kidneys by modulating intestinal microbiota and promoting short-chain fatty acid (SCFA) production. However, its precise mechanism in OTA-induced kidney damage remained unclear. In this study, chickens were orally administered OTA and inulin for 2 weeks to investigate inulin's effects on OTA-induced kidney damage and underlying mechanisms. The alteration of intestinal microbiota, SCFAs contents, and SCFA receptors was further analyzed. Results demonstrated that inulin supplementation influenced intestinal microbiota, increased SCFAs production, and mitigated OTA-induced kidney damage in chickens. The importance of microbiota in mediating inulin's renal protection was further confirmed by antibiotic and fecal microbiota transplantation experiments. Additionally, inulin exhibited antioxidant and anti-inflammatory properties, alleviating NLRP3 inflammasome activation and pyroptosis. In summary, inulin protected chickens from OTA-induced kidney damage, which might provide a potential strategy to mitigate the harmful effects of mycotoxins through prebiotics and safeguard renal health.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Inulina , Riñón , Ocratoxinas , Ocratoxinas/toxicidad , Animales , Inulina/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Suplementos Dietéticos/análisis , Ácidos Grasos Volátiles/metabolismo , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control , Alimentación Animal/análisis , Masculino , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Enfermedades Renales/etiología
10.
Mol Med ; 30(1): 130, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182021

RESUMEN

BACKGROUND: Vascular calcification is a common vascular lesion associated with high morbidity and mortality from cardiovascular events. Antibiotics can disrupt the gut microbiota (GM) and have been shown to exacerbate or attenuate several human diseases. However, whether antibiotic-induced GM disruption affects vascular calcification remains unclear. METHODS: Antibiotic cocktail (ABX) treatment was utilized to test the potential effects of antibiotics on vascular calcification. The effects of antibiotics on GM and serum short-chain fatty acids (SCFAs) in vascular calcification mice were analyzed using 16 S rRNA gene sequencing and targeted metabolomics, respectively. Further, the effects of acetate, propionate and butyrate on vascular calcification were evaluated. Finally, the potential mechanism by which acetate inhibits osteogenic transformation of VSMCs was explored by proteomics. RESULTS: ABX and vancomycin exacerbated vascular calcification. 16 S rRNA gene sequencing and targeted metabolomics analyses showed that ABX and vancomycin treatments resulted in decreased abundance of Bacteroidetes in the fecal microbiota of the mice and decreased serum levels of SCFAs. In addition, supplementation with acetate was found to reduce calcium salt deposition in the aorta of mice and inhibit osteogenic transformation in VSMCs. Finally, using proteomics, we found that the inhibition of osteogenic transformation of VSMCs by acetate may be related to glutathione metabolism and ubiquitin-mediated proteolysis. After adding the glutathione inhibitor Buthionine sulfoximine (BSO) and the ubiquitination inhibitor MG132, we found that the inhibitory effect of acetate on VSMC osteogenic differentiation was weakened by the intervention of BSO, but MG132 had no effect. CONCLUSION: ABX exacerbates vascular calcification, possibly by depleting the abundance of Bacteroidetes and SCFAs in the intestine. Supplementation with acetate has the potential to alleviate vascular calcification, which may be an important target for future treatment of vascular calcification.


Asunto(s)
Acetatos , Antibacterianos , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Calcificación Vascular , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Calcificación Vascular/metabolismo , Calcificación Vascular/etiología , Calcificación Vascular/tratamiento farmacológico , Ratones , Ácidos Grasos Volátiles/metabolismo , Acetatos/farmacología , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Masculino , Osteogénesis/efectos de los fármacos , ARN Ribosómico 16S/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Vancomicina/efectos adversos , Vancomicina/farmacología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos
11.
Life Sci ; 354: 122979, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39147315

RESUMEN

Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.


Asunto(s)
Barrera Hematoencefálica , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico , Neuroglía , Humanos , Barrera Hematoencefálica/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Animales , Neuroglía/metabolismo , Eje Cerebro-Intestino/fisiología , Isquemia Encefálica/metabolismo
12.
Sci Rep ; 14(1): 19323, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164375

RESUMEN

TGF-ß1 activation of hepatic stellate cells (HSCs), transcriptional activator 3 (Stat3) activation and short chain fatty acids (SCFAs), metabolite of intestinal bacteria, is closely associated with hepatic fibrosis. Previous studies have shown that Lactucin has significant anti-inflammatory and hepatoprotective effects; however, the mechanism of Lactucin's role in liver fibrosis associated with SCFAs remains unknown. This study was intended to investigate whether effect of Lactucin on liver fibrosis was mediated by TGF-ß1/Stat3 and SCFAs. We found that Lactucin induced apoptosis in HSC-T6 cells, and inhibition of nuclear translocation of Stat3 and p-Stat3. And Smad3 and TGF-ß1 protein expression was significantly inhibited, while TLR4 and Smad7 protein expression was significantly enhanced. For in vivo experiments, we demonstrated that Lactucin alleviated liver fibrosis in mice, as evidenced by a reduction in inflammatory factors, collagen deposition, liver injury and fibrosis-related factors expression, especially the expression of Smad3 and TGF-ß1 proteins was significantly suppressed and Smad7 protein expression was significantly increased in the liver. In addition, the levels of acetic acid, butyric acid and valeric acid in the intestine of Lactucin-treated mice were significantly higher than those in the intestine of liver fibrosis mice. In conclusion, based on the results of in vivo and in vitro experiments, preventive mechanism of Lactucin against liver fibrosis in mice may be to improve the enterohepatic circulation by regulating the metabolites of intestinal microorganisms, acetic acid and butyric acid, and to further regulate the Stat3 and TGF-ß1 signaling pathway through the "gut-liver axis" to combat liver fibrosis.


Asunto(s)
Ácidos Grasos Volátiles , Células Estrelladas Hepáticas , Cirrosis Hepática , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Transcripción STAT3/metabolismo , Ácidos Grasos Volátiles/metabolismo , Transducción de Señal/efectos de los fármacos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Línea Celular , Proteína smad3/metabolismo , Ratones Endogámicos C57BL , Ratas
13.
Ann Transl Med ; 12(4): 74, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39118956

RESUMEN

Acute lymphocytic leukemia (ALL) is an aggressive hematological malignancy of highly proliferative lymphoblasts. ALL is the most common cancer in children, and is typically treated with combination chemotherapy. The 5-year survival of ALL improved significantly in recent decades with this treatment approach. However, certain age groups (below 2 and over 10 years of age) have much worse prognosis, and over 50% of patients with ALL experience long-term side effects proportional to the dosage of anticancer drugs. Therefore, different treatment strategies are required to improve survival in ALL and to reduce side effects of chemotherapy. Since epigenetic modifications are dominantly reversible, "epidrugs" (drugs targeting epigenetic markers) are considered for feasibility in the treatment of ALL as epigenetic modifications, and acetylation of histones was demonstrated to play a critical role in the pathogenesis of ALL. Histone deacetylases (HDACs) have been shown to be differentially expressed in several hematological malignancies, including ALL. HDAC inhibitors (HDACis) have been shown to express selective toxicity for ALL cells, but they showed limited efficacy and higher than expected toxicity in mouse models or clinical trials in ALL. The aim of this review is to examine the role of the microbiota and microbial metabolites in the mechanisms of HDAC functions, and explore the utilization of the microbiota and microbial metabolites in improving the efficacy of HDACi in ALL. HDAC regulators and natural HDACi are depleted in ALL due to microbiota change leading to a decrease in butyrate and propionate, and HDACi treatment is not effective in ALL due to their short half-life. We propose that HDACi released by the microbiota may be necessary in HDAC regulation and this process is impaired in ALL. Furthermore, the review will also consider the role of restoration of the microbiota or supplementation of natural HDACi in potentially restoring HDAC and HDACi functions.

14.
J Adv Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111622

RESUMEN

INTRODUCTION: The accumulation of microbiota-derived trimethylamine N-oxide (TMAO) in the atrium is linked to the development and progression of atrial arrhythmia. Butyrate, a major short-chain fatty acid, plays a crucial role in sustaining intestinal homeostasis and alleviating systemic inflammation, which may reduce atrial arrhythmogenesis. OBJECTIVES: This study explored the roles of butyrate in regulating TMAO-mediated atrial remodeling and arrhythmia. METHODS: Whole-cell patch clamp experiments, Western blotting, and immunocytochemistry were used to analyze electrical activity and signaling, respectively, in TMAO-treated HL-1 atrial myocytes with or without sodium butyrate (SB) administration. Telemetry electrocardiographic recording and echocardiography and Masson's trichrome staining and immunohistochemistry were employed to examine atrial function and histopathology, respectively, in mice treated with TMAO with and without SB administration. RESULTS: Compared with control cells, TMAO-treated HL-1 myocytes exhibited reduced action potential duration (APD), elevated sarcoplasmic reticulum (SR) calcium content, larger L-type calcium current (ICa-L), increased Na+/Ca2+ exchanger (NCX) current, and increased potassium current. However, the combination of SB and TMAO resulted in similar APD, SR calcium content, ICa-L, transient outward potassium current (Ito), and ultrarapid delayed rectifier potassium current (IKur) compared with controls. Additionally, TMAO-treated HL-1 myocytes exhibited increased activation of endoplasmic reticulum (ER) stress signaling, along with increased PKR-like ER stress kinase (PERK)/IRE1α axis activation and expression of phospho-IP3R, NCX, and Kv1.5, compared with controls or HL-1 cells treated with the combination of TMAO and SB. TMAO-treated mice exhibited atrial ectopic beats, impaired atrial function, increased atrial fibrosis, and greater activation of ER stress signaling with PERK/IRE1α axis activation compared with controls and mice treated with TMAO combined with SB. CONCLUSION: TMAO administration led to PERK/IRE1α axis activation, which may increase atrial remodeling and arrhythmogenesis. SB treatment mitigated TMAO-elicited ER stress. This finding suggests that SB administration is a valuable strategy for treating TMAO-induced atrial arrhythmia.

15.
J Ethnopharmacol ; 337(Pt 1): 118700, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182702

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zexie-Baizhu Decoction (AA), a Chinese Classical Formula composed of Alisma orientalis (Sam.) Juzep. and Aractylodes Macrocephala Koidz in the specific ratio of 5:2, has a long history of use in treating metabolic disorders. Recent studies have demonstrated AA's ameliorative effects on non-alcoholic fatty liver disease (NAFLD); however, the mechanism underlying its action on the gut and adipose tissue, key regulators of metabolism, have not been fully explored. AIM OF THE STUDY: This study aimed to investigate the mechanisms by which AA regulates the homeostasis of gut and adipose tissue in NAFLD. MATERIALS AND METHODS: AA (1500 mg/kg/day) or vehicle was administrated to the high-fat diet-induced and normal chow-fed mice (C57BL/6J). Plasma, the liver, gut microbiota, bile acids, and short-chain fatty acids in the gut, were systematically investigated. RNA sequencing analysis, reverse transcription quantitative real-time PCR, and Western Blotting were performed on the epididymal white adipose tissues (eWAT) to explore AA's influence on NAFLD. Lipidomics of the liver and eWAT were analyzed by liquid chromatography-mass spectrometry and desorption electrospray ionization mass spectrometry imaging. RESULTS: Our study demonstrated that AA administration effectively alleviated liver injury induced by NAFLD, as evidenced by reduced hepatic fat accumulation and inflammation. Mechanistically, AA modulated the composition of the gut microbiota, promoting the growth of beneficial bacteria such as Akkermansia muciniphila and restoring the balance between Firmicutes and Bacteroidetes. Furthermore, AA regulated the levels of bile acids and short-chain fatty acids in the intestine, plasma, and liver. Correspondingly in the eWAT, AA administration activated bile acid receptor (Gpbar1) and short-chain fatty acid receptor (Ffar2), facilitating lipid breakdown and attenuating triglyceride accumulation. Transcriptome analysis revealed that AA influenced gene expression related to fatty acid metabolism, thermogenesis, insulin resistance, AMPK signaling, and the tricarboxylic acid (TCA) cycle, thereby improving NAFLD at the transcriptional level. Additionally, AA treatment significantly altered the lipid composition in the liver, reducing levels of diacylglycerols, triacylglycerols, phosphatidylserines, and cholesterol esters, while increasing levels of phosphatidic acids, phosphatidylethanolamines, and sphingomyelins. CONCLUSION: Our study builds a connection between the gut and adipose tissue to understand the mechanism of AA on alleviating NAFLD, providing new insights into the development of targeted therapies for this condition.

16.
Microb Pathog ; 195: 106850, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142365

RESUMEN

BACKGROUND: Sarcopenia, a hallmark of age-related muscle function decline, significantly impacts elderly physical health. This systematic review aimed to investigate the impact of gut microbiota on sarcopenia. METHODS: Publications up to September 24, 2023 were scrutinized on four databases - PubMed, Web of Science, Cochrane Library, and Embase - using relevant keywords. Non-English papers were disregarded. Data regarding gut microbiota alterations in sarcopenic patients/animal models were collected and examined. RESULTS: Thirteen human and eight animal studies were included. The human studies involved 732 sarcopenic or potentially sarcopenic participants (aged 57-98) and 2559 healthy subjects (aged 54-84). Animal studies encompassed five mouse and three rat experiments. Results indicated an increase in opportunistic pathogens like Enterobacteriaceae, accompanied by changes in several metabolite-related organisms. For example, Bacteroides fluxus related to horse uric acid metabolism exhibited increased abundance. However, Roseburia, Faecalibacterium, Faecalibacterium prausnitzii, Eubacterium retale, Akkermansiaa, Coprococcus, Clostridium_XIVa, Ruminococcaceae, Bacteroides, Clostridium, Eubacterium involved in urolithin A production, and Lactobacillus, Bacteroides, and Clostridium associated with bile acid metabolism displayed decreased abundance. CONCLUSIONS: Age-related sarcopenia and gut microbiota alterations are intricately linked. Short-chain fatty acid metabolism, urolithin A, and bile acid production may be pivotal factors in the gut-muscle axis pathway. Supplementation with beneficial metabolite-associated microorganisms could enhance muscle function, mitigate muscle atrophy, and decelerate sarcopenia progression.


Asunto(s)
Microbioma Gastrointestinal , Sarcopenia , Sarcopenia/microbiología , Sarcopenia/metabolismo , Humanos , Animales , Anciano , Ratas , Ratones , Persona de Mediana Edad , Anciano de 80 o más Años , Envejecimiento/fisiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Masculino , Disbiosis/microbiología , Modelos Animales de Enfermedad , Femenino
17.
Food Sci Biotechnol ; 33(9): 2009-2019, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39130658

RESUMEN

Intricate ecosystem of the human gut microbiome is affected by various environmental factors, genetic makeup of the individual, and diet. Specifically, resistant starch (RS) is indigestible in the small intestine but nourishes the gut microbiota in the colon. Degradation of RS in the gut begins with primary degraders, such as Bifidobacterium adolescentis and Ruminococcus bromii. Recently, new RS degraders, such as Ruminococcoides bili, have been reported. These microorganisms play crucial roles in the transformation of RS into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. SCFAs are necessary to maintain optimal intestinal health, regulate inflammation, and protect against various illnesses. This review discusses the effects of RS on gut and highlights its complex interactions with gut flora, especially the Ruminococcaceae family.

18.
Mol Neurobiol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134825

RESUMEN

Recent insights into Parkinson's disease (PD), a progressive neurodegenerative disorder, suggest a significant influence of the gut microbiome on its pathogenesis and progression through the gut-brain axis. This study integrates 16S rRNA sequencing, high-throughput transcriptomic sequencing, and animal model experiments to explore the molecular mechanisms underpinning the role of gut-brain axis in PD, with a focus on short-chain fatty acids (SCFAs) mediated by the SCFA receptors FFAR2 and FFAR3. Our findings highlighted prominent differences in the gut microbiota composition between PD patients and healthy individuals, particularly in taxa such as Escherichia_Shigella and Bacteroidetes, which potentially impact SCFA levels through secondary metabolite biosynthesis. Notably, fecal microbiota transplantation (FMT) from healthy to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models significantly improved motor function, enhanced dopamine and serotonin levels in the striatum, and increased the number of dopaminergic neurons in the substantia nigra while reducing glial cell activation. This therapeutic effect was associated with increased levels of SCFAs such as acetate, propionate, and butyrate in the gut of MPTP-lesioned mice. Moreover, transcriptomic analyses revealed upregulated expression of FFAR2 and FFAR3 in MPTP-lesioned mice, indicating their crucial role in mediating the benefits of FMT on the central nervous system. These results provide compelling evidence that gut microbiota and SCFAs play a critical role in modulating the gut-brain axis, offering new insights into PD's etiology and potential targets for therapeutic intervention.

19.
Poult Sci ; 103(9): 104020, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084144

RESUMEN

The present study investigated the effects of low protein diets with different starch sources and starch to protein ratio on growth, digestibility, intestinal health, caecal short chain fatty acids (SCFAs), serum cholesterol and triglycerides in broiler chickens. Eight hundred one-day-old male broiler chicks (Ross 308) were randomly allotted to one of 4 dietary treatments with 10 repeats and 20 birds in each repeat. The dietary treatments included 1) a standard protein corn-SBM based diet (SP), 2) a low protein corn-SBM based diet (LPI) without reduced starch: protein ratio, 3) a low protein corn-SBM based diet (LPII) with reduced starch: protein ratio, and 4) a low protein corn-SBM-peas based diet (LPP) and reduced starch: protein ratio. Soy hulls were added in the LPII and LPP diets to reduce starch: protein ratio. During the experiment period from 11 to 24 d, FI was not affected by the dietary treatments (P > 0.05). The BWG was significantly reduced in the LPI diet compared to the SP diet (P < 0.05). Likewise, FCR deteriorated in LPI and LPII but was better in the SP diet followed by the LPP diet (P < 0.05). The apparent total tract digestibility (ATTD) of dry matter (DM) varied significantly among the dietary treatments (P < 0.01). While ATTD of starch was similar for all the diets except the LPP diet wherein the ATTD of starch was significantly lower (P < 0.001). Ether extract digestibility was also significantly different between the SP and LPII dietary treatments (P < 0.01). The AME and AMEn values were significantly lower in the LPP diet compared with other dietary treatments (P < 0.001). Nitrogen retention (%) was increased in all the LP diets compared with the SP diet (P < 0.001), but it was significantly better in both LPII and LPP diets compared to the LPI diet. The data showed that cecal SCFAs production was increased in the LPII and LPP compared to the SP and LPI diets (P < 0.001). Further, the production of acetic, butyric, and propionic acids was substantially higher in the LPP diet (P < 0.001). There was no significant difference in gene expression of Claudin-1 and ZO-1 (P > 0.05). However, MUC-2 and GLUT-1 gene expression were significantly downregulated in the LPI diet (P < 0.05). The concentration of cholesterol and triglycerides was significantly increased in the LPI diet (P < 0.001). In conclusion, the addition of peas as a slowly digestible starch source combined with soy hulls in low protein diet helped to partly recover the growth performance and improved cecal SCFAs production compared to other low protein diets with and without reduced starch: protein ratio in broiler chickens.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Dieta con Restricción de Proteínas , Dieta , Digestión , Almidón , Animales , Pollos/fisiología , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Alimentación Animal/análisis , Masculino , Almidón/metabolismo , Almidón/administración & dosificación , Digestión/efectos de los fármacos , Dieta/veterinaria , Dieta con Restricción de Proteínas/veterinaria , Distribución Aleatoria , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos Volátiles/metabolismo , Ciego/metabolismo
20.
Gut Microbes ; 16(1): 2382324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39069899

RESUMEN

The human gut microbiota is a complex community comprising hundreds of species, with a few present in high abundance and the vast majority in low abundance. The biological functions and effects of these low-abundant species on their hosts are not yet fully understood. In this study, we assembled a bacterial consortium (SC-4) consisting of B. paravirosa, C. comes, M. indica, and A. butyriciproducens, which are low-abundant, short-chain fatty acid (SCFA)-producing bacteria isolated from healthy human gut, and tested its effect on host health using germ-free and human microbiota-associated colitis mouse models. The selection also favored these four bacteria being reduced in abundance in either Ulcerative Colitis (UC) or Crohn's disease (CD) metagenome samples. Our findings demonstrate that SC-4 can colonize germ-free (GF) mice, increasing mucin thickness by activating MUC-1 and MUC-2 genes, thereby protecting GF mice from Dextran Sodium Sulfate (DSS)-induced colitis. Moreover, SC-4 aided in the recovery of human microbiota-associated mice from DSS-induced colitis, and intriguingly, its administration enhanced the alpha diversity of the gut microbiome, shifting the community composition closer to control levels. The results showed enhanced phenotypes across all measures when the mice were supplemented with inulin as a dietary fiber source alongside SC-4 administration. We also showed a functional redundancy existing in the gut microbiome, resulting in the low abundant SCFA producers acting as a form of insurance, which in turn accelerates recovery from the dysbiotic state upon the administration of SC-4. SC-4 colonization also upregulated iNOS gene expression, further supporting its ability to produce an increasing number of goblet cells. Collectively, our results provide evidence that low-abundant SCFA-producing species in the gut may offer a novel therapeutic approach to IBD.


Asunto(s)
Bacterias , Colitis , Sulfato de Dextran , Disbiosis , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Animales , Ácidos Grasos Volátiles/metabolismo , Humanos , Disbiosis/microbiología , Ratones , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Colitis/microbiología , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Consorcios Microbianos , Masculino , Femenino , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Vida Libre de Gérmenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA