Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(11): e31570, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828317

RESUMEN

Yield potential of maize having distinct genetic diversity in Eastern Himalayan Region (EHR) hill ecologies is often limited by Al toxicity caused due to soil acidity. Stress physiological analysis of local check exposed to 0-300 µM Al under sand culture revealed that 150 µM Al as critical and 200 µM Al as tolerable limit. Increase in Al from 0 to 300 µM reduced total chlorophyll, carotenoids by 74.8 % and 44.7 % respectively and enhanced anthocyanin by 35.3 % whereas LA, SLW and SL have reduced by 81.3%, 21.3 % and 47.8 % respectively. R/S ratio was 51.0 and 13.7 % higher at lower Al levels (50 µM and 100 µM) and photosynthetic, transpiration rate and TDM were 62.5 %, 42.9 % and 78.6 % lower at higher Al (300 µM) as compared to control. TRL, RSA, RDW and RV at higher Al (300 µM) were 92.6 %, 98.7 %, 78.7 and 97.5 % lower over control respectively. Root and shoot Al and PUpE at higher Al (300 µM) was 194.0, 69.2 and 830 % higher whereas PUE decreased to 88.5 % over control. Evaluation of 31 indigenous maize cultivars at 0, 150, and 250 µM Al in sand culture, alongside tolerance scoring and assessment, revealed that Megha-9, Megha-10, and MZM-19 exhibits high Al tolerance, Megha-1, MZM-22, and MZM-42 demonstrated moderate tolerance, whereas Uruapara, Sublgarh, and BRL Para were identified as Al-sensitive. Stress physiological parameters like SDW, TDM, TRL, SL and LA contributed 46.02 % of variability to PC1, whereas A, RV, RSA, anthocyanin and Chlorophyll_b, contributed 13.56 % of variability to PC2. Highest values of CMS, SL, LP, LA, TRL and anthocyanin were recorded in cluster I having sensitive cultivars while highest CMS, SL, LA, LP, TRL and RSA were found in cluster II having moderately tolerant cultivars and highest mean values for TRL, RSA, LP, LA, CMS and SL were recorded in cluster III having highly Al stress tolerant cultivars. The traits viz., A, RV, RSA, anthocyanin and Chlorophyll_b, total chlorophyll and TDM were emanated as physio-morphological for assessing Al toxicity stress tolerance in Maize with high divergence values. Tolerant cultivars showing 63.4 % and 22.4 % higher anthocyanin at 150 µM Al and 250 µM Al than moderately tolerant one in acid soil experiment with increased root Al, shoot Al, root P and shoot P by 42.6 %, 11 %, 95.1 % and 34 % respectively were emerged as promising for novel maize improvement under acid soils of EHR.

2.
Plant Physiol Biochem ; 208: 108500, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513518

RESUMEN

BREVIS RADIX (BRX) is a small plant-specific and evolutionary conserved gene family with divergent yet partially redundant biological functions including root and shoot growth, stomatal development and tiller angle in plants. We characterized a BRX family gene from wheat (Triticum aestivum) by gain-of-function in Arabidopsis. Overexpression of TaBRXL2A resulted in longer primary roots with increased root meristem size and higher root growth under control and exogenous hormone treatments as compared to wild type (Col-0) plants. Overexpression lines also exhibited significant differences with the wild type such as increased rosette size, higher leaf number and leaf size. At reproductive stage, overexpression lines exhibited wider siliques and higher grain weight per plant. Under drought stress, overexpression lines exhibited enhanced drought tolerance in terms of higher chlorophyll retention and lower oxidative stress, thereby leading to significant recovery from drought stress. The analysis suggests that the inherent lower stomatal density in the leaves of overexpression lines and higher stomatal closure in response to ABA might contribute to lower water loss from the overexpression lines. Furthermore, TaBRXL2A protein showed membrane localization, presence of conserved residues at N-terminal for palmitoylation, and phosphosites in the linker region which are prescribed for its potential role in protophloem differentiation and stomatal lineage. Thus, we identified a TaBRX family gene which is involved in developmental pathways essential for plant growth, and also enhances drought tolerance in Arabidopsis.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Sequía , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Tamaño de los Órganos , Estomas de Plantas/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell Physiol ; 65(3): 420-427, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153761

RESUMEN

Shoot growth directly impacts plant productivity. Plants adjust their shoot growth in response to varying environments to maximize resource capture and stress resilience. While several factors controlling shoot growth are known, the complexity of the regulation and the input of the environment are not fully understood. We have investigated shoot growth repression induced by low ambient temperatures in hybrids of Arabidopsis thaliana Kro-0 and BG-5 accessions. To continue our previous studies, we confirmed that the Kro-0 allele of DYNAMIN-RELATED PROTEIN 3B causes stunted shoot growth in the BG-5 background. We also found that shoot growth repression was most pronounced near the apex at a lower temperature and that the cells in the hybrid stem failed to elongate correctly. Furthermore, we observed that shoot growth repression in hybrids depended on light availability. Global gene expression analysis indicated the involvement of hormones, especially strigolactone, associated with the dwarf phenotype. Altogether, this study enhances our knowledge on the genetic, physiological and environmental factors associated with shoot growth regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Brotes de la Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenotipo , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446040

RESUMEN

Cytokinin is widely involved in the regulation of plant growth, but its pathway-related genes have not been reported in Moso bamboo. In this study, a total of 129 candidate sequences were identified by bioinformatic methods. These included 15 IPT family genes, 19 LOG family genes, 22 HK family genes, 11 HP family genes and 62 RR family genes. Phylogenetic analysis revealed that the cytokinin pathway was closely related to rice, and evolutionary pattern analysis found that most of the genes have syntenic relationship with rice-related genes. The Moso bamboo cytokinin pathway was evolutionarily conservative and mainly underwent purifying selection, and that gene family expansion was mainly due to whole-gene duplication events. Analysis of transcriptome data revealed a tissue-specific expression pattern of Moso bamboo cytokinin family genes, with auxin and gibberellin response patterns. Analysis of co-expression patterns at the developmental stages of Moso bamboo shoots revealed the existence of a phytohormone co-expression pattern centered on cytokinin signaling genes. The auxin signaling factor PheARF52 was identified by yeast one-hybrid assay as regulating the PheRR3 gene through a P-box element in the PheRR3 promoter region. Auxin and cytokinin signaling crosstalk to regulate Moso bamboo growth. Overall, we systematically identified and analyzed key gene families of the cytokinin pathway in Moso bamboo and obtained key factors for auxin and cytokinin crosstalk, laying the foundation for the study of hormone regulation in Moso bamboo.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Poaceae , Reguladores del Crecimiento de las Plantas/metabolismo , Filogenia , Poaceae/genética , Ácidos Indolacéticos/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Genes (Basel) ; 14(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107660

RESUMEN

Seed vigor is the key performance parameter of good quality seed. A panel was prepared by shortlisting genotypes from all the phenotypic groups representing seedling growth parameters from a total of 278 germplasm lines. A wide variation was observed for the traits in the population. The panel was classified into four genetic structure groups. Fixation indices indicated the existence of linkage disequilibrium in the population. A moderate to high level of diversity parameters was assessed using 143 SSR markers. Principal component, coordinate, neighbor-joining tree and cluster analyses showed subpopulations with a fair degree of correspondence with the growth parameters. Marker-trait association analysis detected eight novel QTLs, namely qAGR4.1, qAGR6.1, qAGR6.2 and qAGR8.1 for absolute growth rate (AGR); qRSG6.1, qRSG7.1 and qRSG8.1 for relative shoot growth (RSG); and qRGR11.1 for relative growth rate (RGR), as analyzed by GLM and MLM. The reported QTL for germination rate (GR), qGR4-1, was validated in this population. Additionally, QTLs present on chromosome 6 controlling RSG and AGR at 221 cM and RSG and AGR on chromosome 8 at 27 cM were detected as genetic hotspots for the parameters. The QTLs identified in the study will be useful for improvement of the seed vigor trait in rice.


Asunto(s)
Oryza , Plantones , Plantones/genética , Germinación/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Genómica
6.
Sci Total Environ ; 862: 160738, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496024

RESUMEN

Temperature is a key factor in regulating and controlling several ecological processes. As there is a feedback relationship between many biogeochemical processes and climate change, their response to temperature changes is particularly important. Previously, a large volume of literature has extensively explored the impact of rising air temperature on shoot growth and maize yield, from enzymatic responses within the leaf to grain yield. As the global temperature continues to increase and the frequency, duration, and/or intensity of heat wave events increases, the soil temperature of the tilth is likely to rise sharply. As one of the most widely planted food crops in the world, maize may be subjected to additional soil temperature pressure. However, as a nutrient organ in direct contact with soil, the root plays a key role in adapting the whole plant to excessive soil temperature. Little research has been done on the effect of the soil microenvironment induced by higher soil temperature on maize root growth and root to shoot communication regulation. Therefore, this review summarizes (1) the effects of excessive soil temperature on the soil microenvironment, including soil respiration, microbial community composition, carbon mineralization, and enzyme activity; (2) the negative response of absorption of water and nutrients by roots and maize root-shoot growth to excessive soil temperature; and (3) potential cultivation strategies to improve maize yield, including improving tillage methods, adding biochar amendments, applying organic fertilizers, optimizing irrigation, and farmland mulching.


Asunto(s)
Suelo , Zea mays , Suelo/química , Biodiversidad , Temperatura , Carbono , Fertilizantes/análisis , Agricultura
7.
AoB Plants ; 14(4): plac020, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35937547

RESUMEN

Composite trees combine optimal traits from both the rootstock and the scion. Dwarfing rootstocks are commonly used to reduce shoot vigour and improve fruit quality and productivity. Although growth habits of different rootstocks have been clearly described, the underlying physiological traits affecting scion vigour are not well understood. Plant water status and stem water potential are strongly influenced by water supply and demand through the soil-plant-atmosphere continuum. In the scion, stomata regulate water loss and are essential to prevent hydraulic failure. Stomatal conductance influences leaf carbon isotope composition. Combined, the effects of reduced stomatal conductance and, consequently, carbon fixation may affect tree growth. These differences could also correspond to differences in scion vigour controlled by rootstock genotype. Here, vegetative growth, gas exchange, stem water potential and leaf δ13C were compared to determine how rootstocks affect scion water relations and whether these differences correspond to shoot vigour. There was a range in vigour among rootstocks by almost 2-fold. Net leaf carbon assimilation rates were lower in rootstocks with lower vigour. Rootstock vigour was closely associated with leaf gas exchange and stem water potential in the scion and was reflected in leaf δ13C signatures. Dwarfing was strongly affected by changes to plant water status induced by rootstock genotype and these changes are distinguishable when measuring leaf and stem δ13C composition. These observations indicate that scion water relations and leaf carbon isotope discrimination were affected by rootstock genotype. These results have implications for better understanding dwarfing mechanisms in apple rootstocks and the relationship with water-use traits.

8.
Front Plant Sci ; 13: 920852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874013

RESUMEN

Global warming is predicted to extend the growing season of trees and plants, and advance spring phenology. However, intensification of extreme climate events in mid-latitude forests, from weakening of the jet stream and atmospheric blockings, may expose trees to increased risk associated with more frequent late-spring frosts. Still, little is known regarding the intraspecific variation in frost tolerance and how it may be shaped by local adaptation to the climate of seed origin. As part of an assisted migration trial located in different bioclimatic zones in the province of Quebec, Canada, and following an extensive late-spring frost that occurred at the end of May 2021, we evaluated the frost damages on various white spruce (Picea glauca) seed sources tested on three sites (south, central, and north). The severity of frost damages was assessed on 5,376 trees after the cold spell and an early spring warming which advanced bud flush by approximately 10 days on average. The frost damage rate was similar among sites and seed sources and averaged 99.8%. Frost damage severity was unrelated to the latitude of seed origin but was variable among sites. The proportion of severely damaged trees was higher in the northern site, followed by central and southern sites. The proportion of severely damaged trees was linearly and inversely related to tree height before the frost event. Apical growth cancelation was not significantly different among seed sources including local ones, and averaged 74, 46, and 22%, respectively, in central, northern, and southern plantation sites. This study provides recommendations to limit the loss of plantation productivity associated with such a succession of spring climate anomalies. Implications for seed transfer models in the context of climate change and productivity of spruce plantations are discussed in the light of lack of local adaptation to such pronounced climate instability and ensuing large-scale maladaptation.

9.
BMC Plant Biol ; 22(1): 331, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820810

RESUMEN

BACKGROUND: Cotton production is adversely effected by drought stress. It is exposed to drought stress at various critical growth stages grown under a water scarcity environment. Roots are the sensors of plants; they detect osmotic stress under drought stress and play an important role in plant drought tolerance mechanisms. The seedling stage is very sensitive to drought stress, and it needed to explore the methods and plant characteristics that contribute to drought tolerance in cotton. RESULTS: Initially, seedlings of 18 genotypes from three Gossypium species: G. hirsutum, G. barbadense, and G. arboreum, were evaluated for various seedling traits under control (NS) and drought stress (DS). Afterward, six genotypes, including two of each species, one tolerant and one susceptible, were identified based on the cumulative drought sensitivity response index (CDSRI). Finally, growth rates (GR) were examined for shoot and root growth parameters under control and DS in experimental hydroponic conditions. A significant variation of drought stress responses was observed across tested genotypes and species. CDSRI allowed here to identify the drought-sensitive and drought-resistant cultivar of each investigated species. Association among root and shoots growth traits disclosed influential effects of enduring the growth under DS. The traits including root length, volume, and root number were the best indicators with significantly higher differential responses in the tolerant genotypes. These root growth traits, coupled with the accumulation of photosynthates and proline, were also the key indicators of the resistance to drought stress. CONCLUSION: Tolerant genotypes have advanced growth rates and the capacity to cop with drought stress by encouraging characteristics, including root differential growth traits coupled with physiological traits such as chlorophyll and proline contents. Tolerant and elite genotypes of G. hirsutum were more tolerant of drought stress than obsolete genotypes of G. barbadense and G. arboreum. Identified genotypes have a strong genetic basis of drought tolerance, which can be used in cotton breeding programs.


Asunto(s)
Gossypium , Plantones , Sequías , Gossypium/genética , Fitomejoramiento , Prolina , Plantones/genética
10.
Curr Biol ; 32(16): 3593-3600.e3, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35839764

RESUMEN

There has been a dramatic recent increase in the understanding of the mechanisms by which plants detect their neighbors,1 including by touch,2 reflected light,3 volatile organic chemicals, and root exudates.4,5 The importance of root exudates remains ill-defined because of confounding experimental variables6,7 and difficulties disentangling neighbor detection in shoot and roots.8-10 There is evidence that root exudates allow distinction between kin and non-kin neighbors,11-13 but identification of specific exudates that function in neighbor detection and/or kin recognition remain elusive.1 Strigolactones (SLs), which are exuded into the soil in significant quantities in flowering plants to promote recruitment of arbuscular mycorrhizal fungi (AMF),14 seem intuitive candidates to act as plant-plant signals, since they also act as hormones in plants,15-17 with dramatic effects on shoot growth18,19 and milder effects on root development.20 Here, using pea, we test whether SLs act as either cues or signals for neighbor detection. We show that peas detect neighbors early in the life cycle through their root systems, resulting in strong changes in shoot biomass and branching, and that this requires SL biosynthesis. We demonstrate that uptake and detection of SLs exuded by neighboring plants are needed for this early neighbor detection, and that plants that cannot exude SLs are outcompeted by neighboring plants and fail to adjust growth to their soil volume. We conclude that plants both exude SLs as signals to modulate neighbor growth and detect environmental SLs as a cue for neighbor presence; collectively, this allows plants to proactively adjust their shoot growth according to neighbor density.


Asunto(s)
Micorrizas , Compuestos Orgánicos Volátiles , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Micorrizas/fisiología , Pisum sativum/fisiología , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Plantas , Suelo
11.
Front Plant Sci ; 13: 921245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795348

RESUMEN

Dodder (Cuscuta spp.) species are obligate parasitic flowering plants that totally depend on host plants for growth and reproduction and severely suppress hosts' growth. As a rootless and leafless plant, excised dodder shoots exhibit rapid growth and elongation for several days to hunt for new host stems, and parasitization could be reestablished. This is one unique ability of the dodder to facilitate its success in nature. Clearly, excised dodder stems have to recycle stored nutrients to elongate as much as possible. However, the mechanism of stored nutrient recycling in the in vitro dodder shoots is still poorly understood. Here, we found that dodder is a carbohydrate-rich holoparasitic plant. During the in vitro dodder shoot development, starch was dramatically and thoroughly degraded in the dodder shoots. Sucrose derived from starch degradation in the basal stems was transported to the shoot tips, in which EMP and TCA pathways were activated to compensate for carbon demand for the following elongation according to the variations of sugar content related to the crucial gene expression, and the metabolomics analysis. Additionally, antioxidants were significantly accumulated in the shoot tips in contrast to those in the basal stems. The variations of phytohormones (jasmonic acid, indole-3-acetic acid, and abscisic acid) indicated that they played essential roles in this process. All these data suggested that starch and sucrose degradation, EMP and TCA activation, antioxidants, and phytohormones were crucial and associated with the in vitro dodder shoot elongation.

12.
Plant J ; 109(2): 323-341, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695266

RESUMEN

Drought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress. However, this often resulted in stunted growth and reduced yield under favorable conditions or moderate drought. Nowadays, drought tolerance research aims to maintain plant growth and yield under drought conditions. Overall, recently deployed strategies to engineer drought tolerance in the lab can be classified into a 'growth-centered' strategy, which focuses on keeping growth unaffected by the drought stress, and a 'drought resilience without growth penalty' strategy, in which the main aim is still to boost drought resilience, while limiting the side effects on plant growth. In this review, we put the scope on these two strategies and some molecular players that were successfully engineered to generate drought-tolerant plants: abscisic acid, brassinosteroids, cytokinins, ethylene, ROS scavenging genes, strigolactones, and aquaporins. We discuss how these pathways participate in growth and stress response regulation under drought. Finally, we present an overview of the current insights and future perspectives in the development of new strategies to improve drought tolerance in the field.


Asunto(s)
Productos Agrícolas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico , Agricultura , Cambio Climático , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Sequías , Ingeniería Genética
13.
Front Biosci (Landmark Ed) ; 26(11): 988-1000, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856747

RESUMEN

Background: Plants have evolved the dual capacity for maximizing light assimilation through stem growth (phototropism) and maximizing water and nutrient absorption through root growth (gravitropism). Previous studies have revealed the physiological and molecular mechanisms of these two processes, but the genetic basis for how gravitropism and phototropism interact and coordinate with one another to determine plant growth remains poorly understood. Methods: We designed a seed germination experiment using a full-sib F1 family of Populus euphratica to simultaneously monitor the gravitropic growth of the radicle and the phototropic growth of the plumule throughout seedling ontogeny. We implemented three functional mapping models to identify quantitative trait loci (QTLs) that regulate gravitropic and phototropic growth. Univariate functional mapping dissected each growth trait separately, bivariate functional mapping mapped two growth traits simultaneously, and composite functional mapping mapped the sum of gravitropic and phototropic growth as a main axis. Results: Bivariate model detected 8 QTLs for gravitropism and phototropism (QWRF, GLUR, F-box, PCFS4, UBQ, TAF12, BHLH95, TMN8), composite model detected 7 QTLs for growth of main axis (ATL8, NEFH, PCFS4, UBQ, SOT16, MOR1, PCMP-H), of which, PCFS4 and UBQ were pleiotropically detected with the both model. Many of these QTLs are situated within the genomic regions of candidate genes. Conclusions: The results from our models provide new insight into the mechanisms of genetic control of gravitropism and phototropism in a desert tree, and will stimulate our understanding of the relationships between gravity and light signal transduction pathways and tree adaptation to arid soil.


Asunto(s)
Fototropismo , Populus , Gravitación , Gravitropismo/genética , Luz , Fototropismo/genética , Populus/genética , Árboles
14.
Plants (Basel) ; 10(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34685904

RESUMEN

Short- and long-term waterlogging conditions impact crop growth and development, preventing crops from reaching their true genetic potential. Two experiments were conducted using a pot-culture facility to better understand soil waterlogging impacts on corn growth and development. Two corn hybrids were grown in 2017 and 2018 under ambient sunlight and temperature conditions. Waterlogging durations of 0, 2, 4, 6, 8, 10, 12, and 14 days were imposed at the V2 growth stage. Morphological (growth and development) and pigment estimation data were collected 15 days after treatments were imposed, 23 days after sowing. As waterlogging was imposed, soil oxygen rapidly decreased until reaching zero in about 8-10 days; upon the termination of the treatments, the oxygen levels recovered to the level of the 0 days treatment within 2 days. Whole-plant dry weight declined as the waterlogging duration increased, and after 2 days of waterlogging, a 44% and 27% decline was observed in experiments 1 and 2, respectively. Leaf area and root volume showed an exponential decay similar to the leaf and root dry weight. Leaf number and plant height were the least sensitive measured parameters and decreased linearly in both experiments. Root forks were the most sensitive parameter after 14 days of waterlogging in both experiments, declining by 83% and 80% in experiments 1 and 2, respectively. The data from this study improve our understanding of how corn plants react to increasing durations of waterlogging. In addition, the functional relationships generated from this study could enhance current corn simulation models for field applications.

15.
Front Plant Sci ; 12: 732344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621286

RESUMEN

Tissue culture approaches are widely used in crop plants for the purposes of micropropagation, regeneration of plants through organogenesis, obtaining pathogen-free plantlets from meristem culture, and developing genetically modified plants. In this research, we evaluated variables that can influence the success of shoot growth and plantlet production in tissue cultures of drug-type Cannabis sativa L. (marijuana). Various sterilization methods were tested to ensure shoot development from nodal explants by limiting the frequency of contaminating endophytes, which otherwise caused the death of explants. Seven commercially grown tetrahydrocannabinol (THC)-containing cannabis genotypes (strains) showed significant differences in response to shoot growth from meristems and nodal explants on Murashige and Skoog (MS) medium containing thidiazuron (1 µM) and naphthaleneacetic acid (0.5 µM) plus 1% activated charcoal. The effect of Driver and Kuniyuki Walnut (DKW) or MS basal salts in media on shoot length and leaf numbers from nodal explants was compared and showed genotype dependency with regard to the growth response. To obtain rooted plantlets, shoots from meristems and nodal explants of genotype Moby Dick were evaluated for rooting, following the addition of sodium metasilicate, silver nitrate, indole-3-butyric acid (IBA), kinetin, or 2,4-D. Sodium metasilicate improved the visual appearance of the foliage and improved the rate of rooting. Silver nitrate also promoted rooting. Following acclimatization, plantlet survival in hydroponic culture, peat plugs, and rockwool substrate was 57, 76, and 83%, respectively. The development of plantlets from meristems is described for the first time in C. sativa and has potential for obtaining pathogen-free plants. The callogenesis response of leaf explants of 11 genotypes on MS medium without activated charcoal was 35% to 100%, depending on the genotype; organogenesis was not observed. The success in recovery of plantlets from meristems and nodal explants is influenced by cannabis genotype, degree of endophytic contamination of the explants, and frequency of rooting. The procedures described here have potential applications for research and commercial utility to obtain plantlets in stage 1 tissue cultures of C. sativa.

16.
Rice (N Y) ; 14(1): 82, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542722

RESUMEN

Transcription factors (TFs) such as ethylene-responsive factors (ERFs) are important for regulating plant growth, development, and responses to abiotic stress. Notably, more than half of the rice ERF-X group members, including ethylene-responsive factor 106 (OsERF106), are abiotic stress-responsive genes. However, their regulatory roles in abiotic stress responses remain poorly understood. OsERF106, a salinity-induced gene of unknown function, is annotated differently in RAP-DB and MSU RGAP. In this study, we isolated a novel (i.e., previously unannotated) OsERF106 gene, designated OsERF106MZ (GenBank accession No. MZ561461), and investigated its role in regulating growth and the response to salinity stress in rice. OsERF106MZ is expressed in germinating seeds, primary roots, and developing flowers. Overexpression of OsERF106MZ led to retardation of growth, relatively high levels of both malondialdehyde (MDA) and reactive oxygen species (ROS), reduced catalase (CAT) activity, and overaccumulation of both sodium (Na+) and potassium (K+) ions in transgenic rice shoots. Additionally, the expression of OsHKT1.3 was downregulated in the shoots of transgenic seedlings grown under both normal and NaCl-treated conditions, while the expression of OsAKT1 was upregulated in the same tissues grown under NaCl-treated conditions. Further microarray and qPCR analyses indicated that the expression of several abiotic stress-responsive genes such as OsABI5 and OsSRO1c was also altered in the shoots of transgenic rice grown under either normal or NaCl-treated conditions. The novel transcription factor OsERF106MZ negatively regulates shoot growth and salinity tolerance in rice through the disruption of ion homeostasis and modulation of stress-responsive gene expression.

17.
Front Plant Sci ; 12: 627832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093603

RESUMEN

Tomato INDOLE-3-ACETIC ACID9 (SlIAA9) is a transcriptional repressor in auxin signal transduction, and SlIAA9 knockout tomato plants develop parthenocarpic fruits without fertilization. We generated sliaa9 mutants with parthenocarpy in several commercial tomato cultivars (Moneymaker, Rio Grande, and Ailsa Craig) using CRISPR-Cas9, and null-segregant lines in the T1 generation were isolated by self-pollination, which was confirmed by PCR and Southern blot analysis. We then estimated shoot growth phenotypes of the mutant plants under different light (low and normal) conditions. The shoot length of sliaa9 plants in Moneymaker and Rio Grande was smaller than those of wild-type cultivars in low light conditions, whereas there was not clear difference between the mutant of Ailsa Craig and the wild-type under both light conditions. Furthermore, young seedlings in Rio Grande exhibited shade avoidance response in hypocotyl growth, in which the hypocotyl lengths were increased in low light conditions, and sliaa9 mutant seedlings of Ailsa Craig exhibited enhanced responses in this phenotype. Fruit production and growth rates were similar among the sliaa9 mutant tomato cultivars. These results suggest that control mechanisms involved in the interaction of AUX/IAA9 and lights condition in elongation growth differ among commercial tomato cultivars.

18.
J Exp Bot ; 72(18): 6350-6364, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34089602

RESUMEN

Brassinosteroid-insensitive-1 (BRI1) plays important roles in various signalling pathways controlling plant growth and development. However, the regulatory mechanism of BRI1 in brassinosteroid (BR)-mediated signalling for shoot growth and wood formation in woody plants is largely unknown. In this study, PtBRI1.2, a brassinosteroid-insensitive-1 gene, was overexpressed in poplar. Shoot growth and wood formation of transgenic plants were examined and the regulatory genes involved were verified. PtBRI1.2 was localized to the plasma membrane, with a predominant expression in leaves. Ectopic expression of PtBRI1.2 in Arabidopsis bri1-201 and bri1-5 mutants rescued their retarded-growth phenotype. Overexpression of PtBRI1.2 in poplar promoted shoot growth and wood formation in transgenic plants. Further studies revealed that overexpression of PtBRI1.2 promoted the accumulation of PtBZR1 (BRASSINAZOLE RESISTANT1) in the nucleus, which subsequently activated PtWNDs (WOOD-ASSOCIATED NAC DOMAIN transcription factors) to up-regulate expression of secondary cell wall biosynthesis genes involved in wood formation. Our results suggest that PtBRI1.2 plays a crucial role in regulating shoot growth and wood formation by activating BR signalling.


Asunto(s)
Brasinoesteroides , Populus , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Populus/genética , Madera
19.
Plant Divers ; 43(2): 173-179, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33997550

RESUMEN

Roses are important horticultural plants with enormous diversity in flowers and flowering behavior. However, molecular regulation of flowering time variation in roses remains poorly characterized. Here, we report an expansion of the FAR1/FRS-like genes that correlates well with the switch to prostrate-to-erect growth of shoots upon flowering in Rosa wichuraiana 'Basye's Thornless' (BT). With the availability of the high-quality chromosome-level genome assembly for BT that we developed recently, we identified 91 RwFAR1/FRS-like genes, a significant expansion in contrast to 52 in Rosa chinensis 'Old Blush' (OB), a founder genotype in modern rose domestication. Rose FAR1/FRS-like proteins feature distinct variation in protein domain structures. The dispersed expansion of RwFAR1/FRS-like genes occurred specifically in clade I and II and is significantly associated with transposon insertion in BT. Most of the RwFAR1/FRS-like genes showed relatively higher expression level than their corresponding orthologs in OB. FAR1/FRS-like genes regulate light-signaling processes, shade avoidance, and flowering time in Arabidopsis thaliana. Therefore, the expansion and duplication of RwFAR1/FRS-like genes, followed by diversification in gene expression, might offer a novel leverage point for further understanding the molecular regulation of the variation in shoot-growth behavior and flowering time in roses.

20.
Front Plant Sci ; 12: 613488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732273

RESUMEN

The epidermal cell layer of plants has important functions in regulating plant growth and development. We have studied the impact of an altered epidermal cytokinin metabolism on Arabidopsis shoot development. Increased epidermal cytokinin synthesis or breakdown was achieved through expression of the cytokinin synthesis gene LOG4 and the cytokinin-degrading CKX1 gene, respectively, under the control of the epidermis-specific AtML1 promoter. During vegetative growth, increased epidermal cytokinin production caused an increased size of the shoot apical meristem and promoted earlier flowering. Leaves became larger and the shoots showed an earlier juvenile-to-adult transition. An increased cytokinin breakdown had the opposite effect on these phenotypic traits indicating that epidermal cytokinin metabolism can be a factor regulating these aspects of shoot development. The phenotypic consequences of abbreviated cytokinin signaling in the epidermis achieved through expression of the ARR1-SRDX repressor were generally milder or even absent indicating that the epidermal cytokinin acts, at least in part, cell non-autonomously. Enhanced epidermal cytokinin synthesis delayed cell differentiation during leaf development leading to an increased cell proliferation and leaf growth. Genetic analysis showed that this cytokinin activity was mediated mainly by the AHK3 receptor and the transcription factor ARR1. We also demonstrate that epidermal cytokinin promotes leaf growth in a largely cell-autonomous fashion. Increased cytokinin synthesis in the outer layer of reproductive tissues and in the placenta enhanced ovule formation by the placenta and caused the formation of larger siliques. This led to a higher number of seeds in larger pods resulting in an increased seed yield per plant. Collectively, the results provide evidence that the cytokinin metabolism in the epidermis is a relevant parameter determining vegetative and reproductive plant growth and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA