Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(14): 21458-21470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38388981

RESUMEN

The Qinghai-Tibet Plateau (QTP) is characterized by an extreme hypoxia, which may lead to lack of sufficient oxygen for compost production, and thus seriously affecting the compost quality. The moisture content (MC) has a direct effect on the oxygen content of composting pile. At present, the research on the optimum moisture content of compost production on the QTP is still lacking. This study aimed to investigate the influences of MC on fermentation quality of sheep manure composting on the QTP and to further analyze the changes of microbial metabolic function and enzyme activity under different MC. Composting experiment with low MC (45%) and conventional MC (60%) was conducted in both summer and autumn. The results showed that the composting efficiency of 45% MC was better than 60% in both seasons, which was mainly manifested as longer high-temperature period (summer:16 d vs 14 d, autumn: 7 d vs 2 d), higher germination index (summer:136.1% vs 128.6%, autumn:103.5% vs 81.2%), and more humus synthesis (summer:159.8 g/kg vs 151.2 g/kg, autumn:136.1 k/kg vs 115.5 k/kg). The 45% MC can improve microbial metabolism, including increasing the abundance of functional genes involved in carbohydrate metabolism, amino acid metabolism, and nucleotide metabolism and improving the activities of cellulase, ß-glucosidase, protease, polyphenol oxidase, and peroxidase. In conclusion, 45% MC can improve the fermentation efficiency and products quality of sheep manure compost on QTP.


Asunto(s)
Compostaje , Suelo , Animales , Ovinos , Estiércol , Tibet , Oxígeno
2.
Bioresour Bioprocess ; 10(1): 53, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647985

RESUMEN

This study explored the effects of turning frequency on fermentation efficiency and microbial metabolic function of sheep manure composting on the Qinghai-Tibet Plateau (QTP). Five treatments with different turning frequencies were set up in this study: turning every 1 day (T1), 2 days (T2), 4 days (T3), 6 days (T4), and 8 days (T5). Results showed that the high temperature period for T1 and T5 lasted only 4 days, while that for T2-T4 lasted more than 8 days. The germination index of T1 and T5 was lower than 80%, while that of T2-T4 was 100.6%, 97.8%, and 88.6%, respectively. This study further predicted the microbial metabolic function of T2-T4 using the bioinformatics tool PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and determining the activities of various functional enzymes. The results showed that carbohydrate metabolism, protein metabolism, and nucleotide metabolism were the main metabolic pathways of microorganisms, and that T2 increased the abundance of functional genes of these metabolic pathways. The activities of protease, cellulase, and peroxidase in T2 and T3 were higher than those in T4, and the effect of T2 was more significant. In conclusion, turning once every 2 days can improve the quality of sheep manure compost on the QTP.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36231444

RESUMEN

The dry climate characteristics of the Qinghai-Tibet Plateau will seriously affect microbial metabolism during composting. In this study, we aimed to investigate the effects of regular water supplementation on the fungal and enzymatic activities of sheep manure composting in the Qinghai-Tibet Plateau. The experiment set up the treatments of water replenishment once every 7 days(T2) and 3.5 days (T3) days, and no water supplementation was used as the control (T1). The results showed that regular water supplementation increased the activities of various enzymes during composting, and the activities of protease, cellulase, peroxidase and polyphenol oxidase in T3 were higher than those in T2. Regular water supplementation increased the relative abundance of Remersonia and Mycothermus, which were significantly positively correlated with the germination index, and degradation of organic components. Regular water supplementation could enrich fungi carbohydrate, protein, and nucleotide metabolisms, and T3 had a better effect. A redundancy analysis showed that environmental factors could significantly affect the fungal community; among them, moisture content (76.9%, p = 0.002) was the greatest contributor. In conclusion, regular water supplementation can improve the key enzyme activities and fungal metabolic function of sheep manure composting, and water replenishment once every 3.5 days had the best effect.


Asunto(s)
Celulasas , Compostaje , Animales , Carbohidratos , Catecol Oxidasa , Estiércol/análisis , Nucleótidos , Péptido Hidrolasas , Peroxidasas , Ovinos , Suelo , Tibet
4.
J Hazard Mater ; 420: 126635, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329093

RESUMEN

Present study was focus on the pollution control aspect of gaseous mitigation and heavy metal passivation as well as their associated bacterial communities driven by apple tree branch biochar (BB) during sheep manure composting. Six treatment was performed with distinct concentration of BB from 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% as T1 to T6. Compared with compost without additive, biochar-based composting recorded faster thermophilic process (4thd) and longer duration (12-14d), lower gaseous emission in terms of ammonia (5.37-10.29 g), nitrous oxide (0.12-0.47 g) and methane (4.38-30.29 g). Notably highest temperature (65.3 â„ƒ) and active thermophilic duration (14d), minimized gaseous volatilization were detected in 10%BB composting. Aspect of non-degradability and enrichment-concentration properties of heavy metals, the total copper (Cu) and zinc (Zn) were increased (from initial 12.71-17.91 to final 16.36-29.36 mg/kg and 107.39-146.58-161.48-211.91 mg/kg). In view of available diethylene triamine pentacetic acid (DTPA) extractable form, DTPA-Cu and DTPA-Zn from 4.29 to 6.57 and 31.66-39.32 mg/kg decreased to 3.75-4.82 and 23.43-40.54 mg/kg, especially the maximized passivation rate of 46.95% and 56.27% were present in 10%BB composting. Additionally, bacterial diversity of biochar-based composting was increased (1817-2310 OTUs) than control (1686 OTUs) and dominant by Firmicutes (52.75%), Bacteroidetes (28.41%) and Actinobacteriota (13.98%). Validated 10% biochar-based composting is the optimal option for effectively control environmental pollution to obtain hygienic composting.


Asunto(s)
Compostaje , Metales Pesados , Animales , Carbón Orgánico , Contaminación Ambiental , Gases , Estiércol , Metales Pesados/análisis , Ovinos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA