Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vet Res Forum ; 15(5): 261-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022582

RESUMEN

Linguatula serrata can infect most ruminants and cause accidental infections in humans. It is a causative parasite of linguatulosis, a disease that not only produces economic losses in cattle but also represents a public health risk due to its zoonotic nature. This study aimed to explore the clinical and pathological findings of pulmonary linguatulosis in a rabbit. The most striking clinical findings in the deceased rabbits were wheezing and labored breathing. Grossly, the most prominent morphological changes in the lungs were well-circumscribed, flat or slightly raised, solitary grayish-white nodular lesions, and consolidated areas. The characteristically tongue-shaped developmental forms of parasites were observed on the cut surface of the lung. Histopathologically, the most noticeable morphological changes in the lung parenchyma were diffuse thickening of the inter-alveolar septum, fibrinoid necrotic vasculitis, medial smooth muscle cells hypertrophy of the arteries, alveolar emphysema, longitudinal and transverse sections of L. serrata nymphs and extra-medullary hematopoietic foci (megakaryocytes). The morphological appearance of the nymphs showed multiple transverse grooves, saw-like cuticles, peri-buccal hooks and acidophilic glands. In conclusion, these findings reveal the etiopathological diagnosis of linguatulosis and suggest that the lungs might be a target organ in addition to the liver and lymph nodes.

2.
Microbiol Spectr ; 12(7): e0351323, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38785434

RESUMEN

Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.


Asunto(s)
Citrus sinensis , MicroARNs , Enfermedades de las Plantas , Proteínas Virales , MicroARNs/metabolismo , MicroARNs/genética , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Citrus sinensis/virología , Citrus sinensis/metabolismo , Virus de Plantas/genética , Virus de Plantas/metabolismo , Virus de Plantas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Procesamiento Postranscripcional del ARN , Citrus/virología , Citrus/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética
3.
Cells Dev ; 177: 203908, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38403117

RESUMEN

The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Alelos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1/genética , Receptores Notch/genética , Receptores Notch/metabolismo
4.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569877

RESUMEN

Widely used agrochemicals that do not exert negative effects on crops and selectively target weeds could influence plant resilience under unfavorable conditions. The cross-adaptation of wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittm.) exposed to two environmental abiotic stressors (drought and waterlogging) was evaluated after treatment with a selective herbicide (Serrate®, Syngenta). The ambivalent effects of the herbicide on the two studied crops were particularly distinct in waterlogged plants, showing a significant reduction in wheat growth and better performance of triticale individuals exposed to the same combined treatment. Histochemical staining for the detection of reactive oxygen species (ROS) confirmed that the herbicide treatment increased the accumulation of superoxide anion in the flooded wheat plants, and this effect persisted in the younger leaves of the recovered individuals. Comparative transcript profiling of ROS scavenging enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) in stressed and recovered plants revealed crop-specific variations resulting from the unfavorable water regimes in combination with the herbicide treatment. Short-term dehydration was relatively well tolerated by the hybrid crop triticale and this aligned with the considerable upregulation of genes for L-Proline biosynthesis. Its drought resilience was diminished by herbicide application, as evidenced by increased ROS accumulation after prolonged water deprivation.


Asunto(s)
Herbicidas , Triticale , Humanos , Antioxidantes/farmacología , Triticum , Especies Reactivas de Oxígeno/farmacología , Herbicidas/farmacología , Sequías
5.
Plants (Basel) ; 12(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570956

RESUMEN

Waterlogging and drought disrupt crop development and productivity. Triticale is known to be relatively tolerant to different stress factors. In natural conditions, plants are rather subjected to multiple environmental factors. Serrate® (Syngenta) is a systemic selective herbicide suitable for cereal crops such as triticale and wheat to restrain annual grass and broadleaf weeds. Triticale (×Triticosecale Wittm., cv. Rozhen) was grown as soil culture under controlled conditions. Seventeen-day-old plantlets were leaf sprayed with Serrate®. The water stress (drought or waterlogging) was applied after 72 h for 7 days, and then the seedlings were left for recovery. The herbicide does not provoke sharp alterations in the antioxidant state (stress markers level, and antioxidant and xenobiotic-detoxifying enzymes activity). The water stresses and combined treatments enhanced significantly the content of stress markers (malondialdehyde, proline, hydrogen peroxide), non-enzymatic (total phenolics and thiol groups-containing compounds), and enzymatic (activities of superoxide dismutase, catalase, guaiacol peroxidase, glutathione reductase) antioxidants, and xenobiotic-detoxifying enzymes (activities of glutathione S-transferase, NADPH:cytochrome P450 reductase, NADH:cytochrome b5 reductase). These effects were more severely expressed after the drought stress, suggesting that this cultivar is more tolerant to waterlogging than to drought stress.

6.
Cancers (Basel) ; 15(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345203

RESUMEN

Arsenite-resistance protein 2, also known as serrate RNA effector molecule (ARS2/SRRT), is known to be involved in cellular proliferation and tumorigenicity. However, its role in prostate cancer (PCa) has not yet been established. We investigated the potential role of SRRT in 496 prostate samples including benign, incidental, advanced, and castrate-resistant patients treated by androgen deprivation therapy (ADT). We also explored the association of SRRT with common genetic aberrations in lethal PCa using immunohistochemistry (IHC) and performed a detailed analysis of SRRT expression using The Cancer Genome Atlas (TCGA PRAD) by utilizing RNA-seq, clinical information (pathological T category and pathological Gleason score). Our findings indicated that high SRRT expression was significantly associated with poor overall survival (OS) and cause-specific survival (CSS). SRRT expression was also significantly associated with common genomic aberrations in lethal PCa such as PTEN loss, ERG gain, mutant TP53, or ATM. Furthermore, TCGA PRAD data revealed that high SRRT mRNA expression was significantly associated with higher Gleason scores, PSA levels, and T pathological categories. Gene set enrichment analysis (GSEA) of RNAseq data from the TCGA PRAD cohort indicated that SRRT may play a potential role in regulating the expression of genes involved in prostate cancer aggressiveness. Conclusion: The current data identify the SRRT's potential role as a prognostic for lethal PCa, and further research is required to investigate its potential as a therapeutic target.

7.
Trends Plant Sci ; 28(7): 841-853, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019716

RESUMEN

The SERRATE (SE) protein is involved in the processing of RNA polymerase II (RNAPII) transcripts. It is associated with different complexes engaged in different aspects of plant RNA metabolism, including assemblies involved in transcription, splicing, polyadenylation, miRNA biogenesis, and RNA degradation. SE stability and interactome properties can be influenced by phosphorylation. SE exhibits an intriguing liquid-liquid phase separation property that may be important in the assembly of different RNA-processing bodies. Therefore, we propose that SE seems to participate in the coordination of different RNA-processing steps and can direct the fate of transcripts, targeting them for processing or degradation when they cannot be properly processed or are synthesized in excess.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Procesamiento Postranscripcional del ARN/genética , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo , ARN/metabolismo , MicroARNs/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Biotechnol Adv ; 60: 108026, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35914626

RESUMEN

Huperzine A (HupA) is a plant-derived lycopodium alkaloid used for the treatment of Alzheimer's disease due to its inhibition against acetylcholinesterase. Currently, industrial production of HupA relies primarily on direct extraction from Huperzia serrate, a perennial herbaceous plant. However, this strategy cannot satisfy the increasing demand for HupA due to scarcity of H. serrate whose growth is quite slow. Pathway engineering has emerged as a novel strategy for the production of HupA. Unfortunately, the biosynthesis mechanism of HupA has not been well documented. In this review, we summarize not only the methods for plant extraction and chemical synthesis but also state-of-the-art advances in biosynthesis of HupA, including synthetic pathways, key enzymes, and especially catalytic mechanisms. Overall, this review aims to provide valuable insights for complete biosynthesis of Hup A.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Huperzia , Acetilcolinesterasa/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Huperzia/metabolismo , Sesquiterpenos
9.
Biochem Soc Trans ; 49(3): 1325-1336, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34060620

RESUMEN

ARS2/SRRT is an essential eukaryotic protein that has emerged as a critical factor in the sorting of functional from non-functional RNA polymerase II (Pol II) transcripts. Through its interaction with the Cap Binding Complex (CBC), it associates with the cap of newly made RNAs and acts as a hub for competitive exchanges of protein factors that ultimately determine the fate of the associated RNA. The central position of the protein within the nuclear gene expression machinery likely explains why its depletion causes a broad range of phenotypes, yet an exact function of the protein remains elusive. Here, we consider the literature on ARS2/SRRT with the attempt to garner the threads into a unifying working model for ARS2/SRRT function at the nexus of Pol II transcription, transcript maturation and quality control.


Asunto(s)
Núcleo Celular/genética , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN/genética , Transcripción Genética , Animales , Núcleo Celular/metabolismo , Humanos , Control de Calidad , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo
10.
Am J Hum Genet ; 108(5): 840-856, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33861953

RESUMEN

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.


Asunto(s)
Proteína Jagged-2/genética , Distrofias Musculares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Línea Celular , Niño , Preescolar , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Glucosiltransferasas/genética , Haplotipos/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/química , Proteína Jagged-2/deficiencia , Proteína Jagged-2/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Modelos Moleculares , Músculos/metabolismo , Músculos/patología , Distrofias Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Linaje , Fenotipo , Receptores Notch/metabolismo , Transducción de Señal , Secuenciación del Exoma , Adulto Joven
11.
Plant Divers ; 43(1): 71-77, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33778227

RESUMEN

SERRATE (SE) plays critical roles in RNA metabolism and plant growth regulation. However, its function in stress-response processes remains largely unknown. Here, we examined the regulatory role of SE using the se-1 mutant and its complementation line under saline conditions. The expression of SE was repressed by salt treatment at both mRNA and protein levels. After treatment with different NaCl concentrations, the se-1 mutants showed increased sensitivity to salinity. This heightened sensitivity was evidenced by decreased germination, reduced root growth, more serious chlorosis, and increased conductivity of the mutants compared with the wild type. Further analysis revealed that SE regulates the pre-mRNA splicing of several well-characterized marker genes associated with salt stress tolerance. Our data thus imply that SE may function as a key component in plant response to salt stress by modulating the splicing of salt stress-associated genes.

12.
Biomolecules ; 11(2)2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670724

RESUMEN

The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.


Asunto(s)
Receptores Notch/metabolismo , Animales , Glicosilación , Humanos , Espectrometría de Masas , Unión Proteica , Receptores Notch/genética
13.
Animals (Basel) ; 11(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567795

RESUMEN

The influences of Boswellia serrata resin extract (BSRE) as a feed additive on the growth performance, immune response, antioxidant status, and disease resistance of Nile tilapia, Oreochromis niloticus L. were assessed. One hundred-forty four fingerlings (initial weight: 21.82 ± 0.48 g) were randomly allotted into four groups with three replicates where they were fed on one of four treatments with four levels of Boswellia serrata resin extract 0, 5, 10, or 15 g kg-1, BSRE0, BSRE5, BSRE10, BSRE15, respectively for eight weeks. After the end of the feeding trial, the fish were challenged with Staphylococcus aureus, and mortalities were noted. The final body weight, total body weight gain, and the total feed intake were quadratically increased in BSRE5 treatment (p < 0.01). The protein productive efficiency (PPE) was linearly and quadratically increased in all BSRE supplemented treatments (p < 0.01). Dietary addition of BSRE raised the fish crude protein content and reduced the fat content in a level-dependent manner (p < 0.01). The ash content was raised in the BSRE15 group (p < 0.01). Dietary BSRE supplementation decreased the serum levels of glucose, total cholesterol, triglycerides, and nitric oxide. It increased the serum levels of total protein, albumin, total globulins, α1 globulin, α2 globulin, ß globulin, É£ globulin, Catalase, and SOD (superoxide dismutase) activity, GSH (reduced glutathione), lysozyme activity, and MPO (myeloperoxidase) in a level-dependent manner (p < 0.05). The BSRE15 diet increased the serum level of ALT (alanine aminotransferase) and decreased creatinine serum level (p < 0.05). Dietary BSRE supplementation increased the relative percentage of survival % (RPS) of S. aureus challenged fish. The histoarchitecture of the gills and kidney was normal in the BSRE5 treatment and moderately changed in BSRE10 and BSRE15 treatments. The splenic lymphoid elements were more prevalent, and the melano-macrophage centers (MMC) were mild to somewhat activated in BSRE supplemented treatments. Dietary BSRE supplementation improved the intestinal histomorphology. It can be concluded that BSRE addition can enhance the antioxidant activity, immune status, and disease resistance of O. niloticus to S. aureus infection. The level of 5 g kg-1 BSRE can improve fish growth without causing harmful effects on fish health. The highest levels of BSRE are not recommended as they badly affected the histoarchitecture of many vital organs.

14.
In Vivo ; 35(2): 859-869, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33622878

RESUMEN

BACKGROUND/AIM: The DSL proteins, Serrate and Delta, which act as Notch receptor ligands, mediate signalling between adjacent cells, when a ligand-expressing cell binds to Notch on an adjacent receiving cell. Notch is ubiquitously expressed and DSL protein mis-expression can have devastating developmental consequences. Although transcriptional regulation of Delta and Serrate has been amply documented, we examined whether they are also regulated at the level of translation. MATERIALS AND METHODS: We generated a series of deletions to investigate the initiation codon usage for Serrate using Drosophila S2 cells. RESULTS: Serrate mRNA contains three putative ATG initiation codons spanning a 60-codon region upstream of its signal peptide; we found that each one can act as an initiation codon, however, with a different translational efficiency. CONCLUSION: Serrate expression is strictly regulated at the translational level.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Uso de Codones , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Proteína Jagged-1 , Proteínas de la Membrana/genética , Receptores Notch , Proteínas Serrate-Jagged
15.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937992

RESUMEN

The embryogenic transition of somatic cells requires an extensive reprogramming of the cell transcriptome. Relevantly, the extensive modulation of the genes that have a regulatory function, in particular the genes encoding the transcription factors (TFs) and miRNAs, have been indicated as controlling somatic embryogenesis (SE) that is induced in vitro in the somatic cells of plants. Identifying the regulatory relationships between the TFs and miRNAs during SE induction is of central importance for understanding the complex regulatory interplay that fine-tunes a cell transcriptome during the embryogenic transition. Hence, here, we analysed the regulatory relationships between AGL15 (AGAMOUS-LIKE 15) TF and miR156 in an embryogenic culture of Arabidopsis. Both AGL15 and miR156 control SE induction and AGL15 has been reported to target the MIR156 genes in planta. The results showed that AGL15 contributes to the regulation of miR156 in an embryogenic culture at two levels that involve the activation of the MIR156 transcription and the containment of the abundance of mature miR156 by repressing the miRNA biogenesis genes DCL1 (DICER-LIKE1), SERRATE and HEN1 (HUA-ENHANCER1). To repress the miRNA biogenesis genes AGL15 seems to co-operate with the TOPLESS co-repressors (TPL and TPR1-4), which are components of the SIN3/HDAC silencing complex. The impact of TSA (trichostatin A), an inhibitor of the HDAC histone deacetylases, on the expression of the miRNA biogenesis genes together with the ChIP results implies that histone deacetylation is involved in the AGL15-mediated repression of miRNA processing. The results indicate that HDAC6 and HDAC19 histone deacetylases might co-operate with AGL15 in silencing the complex that controls the abundance of miR156 during embryogenic induction. This study provides new evidence about the histone acetylation-mediated control of the miRNA pathways during the embryogenic reprogramming of plant somatic cells and the essential role of AGL15 in this regulatory mechanism.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Arabidopsis/genética , Reprogramación Celular/genética , Histonas/genética , Proteínas de Dominio MADS/genética , MicroARNs/genética , Acetilación , Regulación de la Expresión Génica de las Plantas/genética , Histona Desacetilasas/genética , Transcriptoma/genética
16.
Proc Natl Acad Sci U S A ; 117(38): 23982-23990, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32887800

RESUMEN

MAC5 is a component of the conserved MOS4-associated complex. It plays critical roles in development and immunity. Here we report that MAC5 is required for microRNA (miRNA) biogenesis. MAC5 interacts with Serrate (SE), which is a core component of the microprocessor that processes primary miRNA transcripts (pri-miRNAs) into miRNAs and binds the stem-loop region of pri-miRNAs. MAC5 is essential for both the efficient processing and the stability of pri-miRNAs. Interestingly, the reduction of pri-miRNA levels in mac5 is partially caused by XRN2/XRN3, the nuclear-localized 5'-to-3' exoribonucleases, and depends on SE. These results reveal that MAC5 plays a dual role in promoting pri-miRNA processing and stability through its interaction with SE and/or pri-miRNAs. This study also uncovers that pri-miRNAs need to be protected from nuclear RNA decay machinery, which is connected to the microprocessor.


Asunto(s)
Proteínas de Arabidopsis , Exorribonucleasas , MicroARNs , Proteínas Nucleares , Proteínas de Unión al ARN , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
Plants (Basel) ; 9(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121542

RESUMEN

Small RNAs (smRNA, 19-25 nucleotides long), which are transcribed by RNA polymerase II, regulate the expression of genes involved in a multitude of processes in eukaryotes. miRNA biogenesis and the proteins involved in the biogenesis pathway differ across plant and animal lineages. The major proteins constituting the biogenesis pathway, namely, the Dicers (DCL/DCR) and Argonautes (AGOs), have been extensively studied. However, the accessory proteins (DAWDLE (DDL), SERRATE (SE), and TOUGH (TGH)) of the pathway that differs across the two lineages remain largely uncharacterized. We present the first detailed report on the molecular evolution and divergence of these proteins across eukaryotes. Although DDL is present in eukaryotes and prokaryotes, SE and TGH appear to be specific to eukaryotes. The addition/deletion of specific domains and/or domain-specific sequence divergence in the three proteins points to the observed functional divergence of these proteins across the two lineages, which correlates with the differences in miRNA length across the two lineages. Our data enhance the current understanding of the structure-function relationship of these proteins and reveals previous unexplored crucial residues in the three proteins that can be used as a basis for further functional characterization. The data presented here on the number of miRNAs in crown eukaryotic lineages are consistent with the notion of the expansion of the number of miRNA-coding genes in animal and plant lineages correlating with organismal complexity. Whether this difference in functionally correlates with the diversification (or presence/absence) of the three proteins studied here or the miRNA signaling in the plant and animal lineages is unclear. Based on our results of the three proteins studied here and previously available data concerning the evolution of miRNA genes in the plant and animal lineages, we believe that miRNAs probably evolved once in the ancestor to crown eukaryotes and have diversified independently in the eukaryotes.

18.
Adv Exp Med Biol ; 1227: 29-49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32072497

RESUMEN

Cellular development can be controlled by communication between adjacent cells mediated by the highly conserved Notch signaling system. A cell expressing the Notch receptor on one cell can be activated in trans by ligands on an adjacent cell leading to alteration of transcription and cellular fate. Ligands also have the ability to inhibit Notch signaling, and this can be accomplished when both receptor and ligands are coexpressed in cis on the same cell. The manner in which cis-inhibition is accomplished is not entirely clear but it is known to involve several different protein domains of the ligands and the receptor. Some of the protein domains involved in trans-activation are also used for cis-inhibition, but some are used uniquely for each process. In this work, the involvement of various ligand regions and the receptor are discussed in relation to their contributions to Notch signaling.


Asunto(s)
Receptores Notch/metabolismo , Transducción de Señal , Animales , Humanos , Ligandos
19.
J Mech Behav Biomed Mater ; 103: 103586, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090914

RESUMEN

Through biological evolution, bivalve mollusks developed shells to improve the utilization of metabolic energy and provide protection against external threats. In addition to the mechanical optimization of the microstructure, the design of the macroscopic shape of a bivalve shell naturally becomes a potential approach to achieving the aforementioned purposes. While the functions of some features of mollusk shells have been studied, the role of the suture-serrate margins, a common morphology of bivalve shell edges, in the global mechanical behaviors of bivalve shells requires further exploration. Here, we present how the serrate margins contribute to the global mechanical properties of bivalve shells. The results of the compression tests employed on a typical bivalve, M. mercenaria, showed that the complete bivalve shells with suture-serrate margins perform better in terms of strength and work to fracture than those without the margins under the same conditions (dry and wet). The primary failure types observed during compression reveal that the failure mechanisms of valve shells are dependent on the suture-serrate margin morphology and water content. Using numerical simulations, the mechanical functions of the suture-serrate margins were demonstrated. Specifically, serrate margins provide mutual resistance by "locking" complementary valves to redistribute and eliminate stress concentrations around pre-existing defects, thereby enhancing the mechanostability and strength of the entire structure.


Asunto(s)
Exoesqueleto , Bivalvos , Animales , Suturas , Agua
20.
Dev Genes Evol ; 230(3): 213-225, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31960122

RESUMEN

Size and shape constitute fundamental aspects in the description of morphology. Yet while the developmental-genetic underpinnings of trait size, in particular with regard to scaling relationships, are increasingly well understood, those of shape remain largely elusive. Here we investigate the potential function of the Notch signaling pathway in instructing the shape of beetle horns, a highly diversified and evolutionarily novel morphological structure. We focused on the bull-headed dung beetle Onthophagus taurus due to the wide range of horn sizes and shapes present among males in this species, in order to assess the potential function of Notch signaling in the specification of horn shape alongside the regulation of shape changes with allometry. Using RNA interference-mediated transcript depletion of Notch and its ligands, we document a highly conserved role of Notch signaling in general appendage formation. By integrating our functional genetic approach with a geometric morphometric analysis, we find that Notch signaling moderately but consistently affects horn shape, and does so differently for the horns of minor, intermediate-sized, and major males. Our results suggest that the function of Notch signaling during head horn formation may vary in a complex manner across male morphs, and highlights the power of integrating functional genetic and geometric morphometric approaches in analyzing subtle but nevertheless biologically important phenotypes in the face of significant allometric variation.


Asunto(s)
Tipificación del Cuerpo , Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Receptores Notch/fisiología , Proteínas Serrate-Jagged/metabolismo , Transducción de Señal , Animales , Evolución Biológica , Escarabajos/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Insecto , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Morfogénesis , Fenotipo , Interferencia de ARN , Proteínas Serrate-Jagged/genética , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA