Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Front Psychol ; 15: 1388347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966744

RESUMEN

Hypnosis is an effective intervention with proven efficacy that is employed in clinical settings and for investigating various cognitive processes. Despite their practical success, no consensus exists regarding the mechanisms underlying well-established hypnotic phenomena. Here, we suggest a new framework called the Simulation-Adaptation Theory of Hypnosis (SATH). SATH expands the predictive coding framework by focusing on (a) redundancy elimination in generative models using intrinsically generated prediction errors, (b) adaptation due to amplified or prolonged neural activity, and (c) using internally generated predictions as a venue for learning new associations. The core of our treatise is that simulating proprioceptive, interoceptive, and exteroceptive signals, along with the top-down attenuation of the precision of sensory prediction errors due to neural adaptation, can explain objective and subjective hypnotic phenomena. Based on these postulations, we offer mechanistic explanations for critical categories of direct verbal suggestions, including (1) direct-ideomotor, (2) challenge-ideomotor, (3) perceptual, and (4) cognitive suggestions. Notably, we argue that besides explaining objective responses, SATH accounts for the subjective effects of suggestions, i.e., the change in the sense of agency and reality. Finally, we discuss individual differences in hypnotizability and how SATH accommodates them. We believe that SATH is exhaustive and parsimonious in its scope, can explain a wide range of hypnotic phenomena without contradiction, and provides a host of testable predictions for future research.

2.
Psychon Bull Rev ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954157

RESUMEN

Sensory attenuation refers to the reduction in sensory intensity resulting from self-initiated actions compared to stimuli initiated externally. A classic example is scratching oneself without feeling itchy. This phenomenon extends across various sensory modalities, including visual, auditory, somatosensory, and nociceptive stimuli. The internal forward model proposes that during voluntary actions, an efferent copy of the action command is sent out to predict sensory feedback. This predicted sensory feedback is then compared with the actual sensory feedback, leading to the suppression or reduction of sensory stimuli originating from self-initiated actions. To further elucidate the neural mechanisms underlying sensory attenuation effect, we conducted an extensive meta-analysis of functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies. Utilizing activation likelihood estimation (ALE) analysis, our results revealed significant activations in a prominent cluster encompassing the right superior temporal gyrus (rSTG), right middle temporal gyrus (rMTG), and right insula when comparing external-generated with self-generated conditions. Additionally, significant activation was observed in the right anterior cerebellum when comparing self-generated to external-generated conditions. Further analysis using meta-analytic connectivity modeling (MACM) unveiled distinct brain networks co-activated with the rMTG and right cerebellum, respectively. Based on these findings, we propose that sensory attenuation arises from the suppression of reflexive inputs elicited by self-initiated actions through the internal forward modeling of a cerebellum-centered action prediction network, enabling the "sensory conflict detection" regions to effectively discriminate between inputs resulting from self-induced actions and those originating externally.

3.
Neuroimage ; 297: 120717, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971482

RESUMEN

Self-initiated sensory action effects are widely assumed to lead to less intense perception and reduced neural responses compared to externally triggered stimuli (sensory attenuation). However, it is unclear if sensory attenuation occurs in all cases of action-effect prediction. Specifically, when predicted action-effects are relevant to determine follow-up actions attenuation could be detrimental. We quantified auditory event-related potentials (ERP) in electroencephalography (EEG) when human participants created two-sound sequences by pressing two keys on a keyboard associated with different pitch, giving rise to identity-specific action-effect prediction after the first keypress. The first sound corresponded to (congruent) or violated (incongruent) the predicted pitch and was either relevant for the selection of the second keypress to correctly complete the sequence (Relevance) or irrelevant (Control Movement), or there was only one keypress and sound (Baseline). We found a diminished P2-timed ERP component in incongruent compared to congruent trials when the sound was relevant for the subsequent action. This effect of action-effect prediction was due to an ERP reduction for incongruent relevant sounds compared to incongruent irrelevant sounds at P2 latencies and correlated negatively with modulations of pupil dilation. Contrary to our expectation, we did not observe an N1 modulation by congruency in any condition. Attenuation of the N1 component seems absent for predicted identity-specific auditory action effects, while P2-timed ERPs as well as pupil size are sensitive to predictability, at least when action effects are relevant for the selection of the next action. Incongruent relevant stimuli thereby take a special place and seem to be subject to attentional modulations and error processing.


Asunto(s)
Electroencefalografía , Potenciales Evocados Auditivos , Pupila , Humanos , Masculino , Femenino , Potenciales Evocados Auditivos/fisiología , Adulto Joven , Adulto , Pupila/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología
4.
Neurosci Biobehav Rev ; 163: 105781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925210

RESUMEN

The sense of agency is the experience of being the author of self-generated actions and their outcomes. Both clinical manifestations and experimental evidence suggest that the agency experience and the mechanisms underlying agency attribution may be dysfunctional in schizophrenia. Yet, studies investigating the sense of agency in these patients show seemingly conflicting results: some indicated under-attribution of self-agency (coherently with certain positive symptoms), while others suggested over-attribution of self-agency. In this review, we assess whether recent theoretical frameworks can reconcile these divergent results. We examine whether the identification of agency abnormalities in schizophrenia might depend on the measure of self-agency considered (depending on the specific task requirements) and the available agency-related cues. We conclude that all these aspects are relevant to predict and characterize the type of agency misattribution that schizophrenia patients might show. We argue that one particular model, based on the predictive coding theory, can reconcile the interpretation of the multifarious phenomenology of agency manifestations in schizophrenia, paving the way for testing agency disorders in novel ways.


Asunto(s)
Esquizofrenia , Psicología del Esquizofrénico , Humanos , Esquizofrenia/fisiopatología
5.
Int J Psychophysiol ; 200: 112344, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614439

RESUMEN

This study explores the impact of movement-outcome congruency and motor dominance on the action-associated modulations of early visual event-related potentials (ERPs). Employing the contingent paradigm, participants with varying degrees of motor dominance were exposed to stimuli depicting left or right human hands in the corresponding visual hemifields. Stimuli were either passively observed or evoked by voluntary button-presses with the dominant or non-dominant hand, in a manner that was either congruent or incongruent with stimulus laterality and hemifield. Early occipital responses (C1 and P1 components) revealed modulations consistent with sensory attenuation (SA) for self-evoked stimuli. Our findings suggest that sensory attenuation during the initial stages of visual processing (C1 component) is a general phenomenon across all degrees of handedness and stimulus/movement combinations. However, the magnitude of C1 suppression was modulated by handedness and movement-stimulus congruency, reflecting stronger SA in right-handed participants for stimuli depicting the right hand, when elicited by actions of the corresponding hand, and measured above the contralateral occipital lobe. P1 modulation suggested concurrent but opposing influences of attention and sensory prediction, with more pronounced suppression following stimulus-congruent button-presses over the hemisphere contralateral to movement, especially in left-handed individuals. We suggest that effects of motor dominance on the degree of SA may stem from functional/anatomical asymmetries in the processing of body parts (C1) and attention networks (P1). Overall, our results demonstrate the modulating effect of hand dominance and movement-outcome congruency on SA, underscoring the need for deeper exploration of their interplay. Additional empirical evidence in this direction could substantiate a premotor account for action-associated modulation of early sensory processing in the visual domain.


Asunto(s)
Electroencefalografía , Potenciales Evocados Visuales , Lateralidad Funcional , Desempeño Psicomotor , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Lateralidad Funcional/fisiología , Desempeño Psicomotor/fisiología , Potenciales Evocados Visuales/fisiología , Percepción Visual/fisiología , Atención/fisiología , Movimiento/fisiología
6.
Conscious Cogn ; 119: 103667, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38428277

RESUMEN

The sense of agency (SoA) is central to human experience. The comparator model, contrasting sensory prediction and action feedback, is influential but limited in explaining SoA. We investigated mechanisms beyond the comparator model, focusing on the processing of unpredictable stimuli, perimotor components of SoA, and their relation to schizotypy. ERPs were recorded from 18 healthy participants engaged in button-pressing tasks while perceiving tones with varying causal relationships with their actions. We investigated the processing of non-causally related tones, contrasted this to causally related tones, and examined perimotor correlates of subjective expectancy and experience of agency. We confirmed N100 attenuation for self-generated stimuli but found similar effects for expectancy-dependent processing of random tones. SoA also correlated with perimotor ERP components, modulated by schizotypy. Thus, neural processes preceding actions contribute to the formation of SoA and are associated with schizotypy. Unpredictable events also undergo sensory attenuation, implying additional mechanisms contributing to SoA.


Asunto(s)
Potenciales Evocados , Motivación , Humanos , Potenciales Evocados/fisiología
7.
Biol Psychiatry ; 96(3): 207-221, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246250

RESUMEN

BACKGROUND: Sensory attenuation (SA), the dampened perception of self-generated sensory information, is typically associated with reduced event-related potential signals, such as for the N1 component of auditory event-related potentials. SA, together with efficient monitoring of intentions and actions, should facilitate the distinction between self-generated and externally generated sensory events, thereby optimizing interaction with the world. According to many, SA is deficient in schizophrenia. The question arises whether altered SA reflects a sufficient mechanism to explain positive symptoms such as auditory hallucinations. A systematic association of reduced auditory SA in hallucinating patients would support this hypothesis. METHODS: We conducted a series of meta-analyses on 15 studies on auditory SA in which the N1 component of event-related potential-electroencephalogram signals was measured during talking (self-generated sensory signals condition) or when listening to prerecorded vocalizations (externally generated sensory signals condition). RESULTS: We found that individuals with schizophrenia did show some auditory SA because their N1 signal was significantly attenuated in talking conditions compared with listening conditions. However, the magnitude of such attenuation was reduced in individuals with schizophrenia compared to healthy control participants. This phenomenon generalizes independently from the stage of the disease, the severity of positive symptoms, and whether patients have auditory hallucinations or not. CONCLUSIONS: These findings suggest that reduced SA cannot be a sufficient mechanism for explaining positive symptoms such as auditory hallucinations in schizophrenia. Because reduced SA was also present in participants at risk of schizophrenia, reduced SA may represent a risk factor for the disorder. We discuss the implications of these results for clinical-cognitive models of schizophrenia.


Asunto(s)
Alucinaciones , Esquizofrenia , Alucinaciones/fisiopatología , Alucinaciones/etiología , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/complicaciones , Factores de Riesgo , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Percepción Auditiva/fisiología , Potenciales Evocados/fisiología , Estimulación Acústica
8.
Exp Brain Res ; 242(1): 149-161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979067

RESUMEN

The attenuation of sensory inputs via various methods has been demonstrated to impair balance control and alter locomotor behavior during human walking; however, the effects of attenuating foot sole sensation under distinct areas of the foot sole on lower extremity motor output remains poorly understood. Thus, the purpose of this study was to attenuate cutaneous feedback via regional hypothermia under five different areas of the foot sole and investigate the resultant modulation of kinematic and muscle activity during level walking. Electromyography from eight lower leg muscles, kinematics, and location of center of pressure was recorded from 48 healthy young adults completing walking trials with normal and reduced cutaneous sensation from bilateral foot soles. The results of this study highlight the modulatory response of the tibialis anterior in terminal stance (propulsion and toe-off) and medial gastrocnemius muscle throughout the entire stance phase of gait. The topographical organization of foot sole skin in response to the attenuation of cutaneous feedback from different areas of the foot sole significantly modified locomotor activity. Furthermore, the locomotor response to cutaneous attenuation under the same regions that we previously facilitated with tactile feedback do not oppose each other, suggesting different physiological changes to foot sole skin generate unique gait behaviors.


Asunto(s)
Articulación del Tobillo , Marcha , Adulto Joven , Humanos , Articulación del Tobillo/fisiología , Marcha/fisiología , Caminata/fisiología , Pie/fisiología , Músculo Esquelético/fisiología , Electromiografía , Tacto , Fenómenos Biomecánicos
9.
Atten Percept Psychophys ; 86(2): 587-601, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148430

RESUMEN

Understanding how the brain incorporates sensory and motor information will enable better theory building on human perception and behavior. In this study, we aimed to estimate the influence of predictive mechanisms on the magnitude and variability of sensory attenuation in two online samples. After the presentation of a visual cue stimulus, participants (Experiment 1: N = 224, Experiment 2: N = 84) compared the loudness of two consecutive tones in a two-alternative forced-choice task. In Experiment 1, the first tone was either self-initiated or not; in Experiment 2, the second tone was either self-initiated or not (active and passive condition, respectively). We further manipulated identity prediction (i.e., the congruence of pre-learned cue-sound combinations; congruent vs. incongruent), and the duration of the onset delay (to account for effects of attentional differences between the passive and active condition, 50 ms vs. 0 ms). We critically discuss our results within the framework of both classical (i.e., motor-based forward models) and contemporary approaches (i.e., predictive processing framework). Contrary to our preregistered hypothesis, we observed enhanced perceptual processing, instead of attenuation, for self-initiated auditory sensory input. Further, our results reveal an effect of fixed sound delays on the processing of motor and non-motor-based predictive information, and may point to according shifts in attention, leading to a perceptual bias. These results might best be captured by a hybrid explanatory model, combining predictions based on self-initiated motor action with a global predictive mechanism.


Asunto(s)
Percepción Auditiva , Electroencefalografía , Humanos , Encéfalo , Sonido , Atención , Estimulación Acústica/métodos
10.
Front Hum Neurosci ; 17: 1237407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053650

RESUMEN

Introduction: An important factor for optimal sensorimotor control is how well we are able to predict sensory feedback from internal and external sources during movement. If predictability decreases due to external disturbances, the brain is able to adjust muscle activation and the filtering of incoming sensory inputs. However, little is known about sensorimotor adjustments when predictability is increased by availability of additional internal feedback. In the present study we investigated how modifications of internal and external sensory feedback influence the control of muscle activation and gating of sensory input. Methods: Co-activation of forearm muscles, somatosensory evoked potentials (SEP) and short afferent inhibition (SAI) were assessed during three object manipulation tasks designed to differ in the predictability of sensory feedback. These included manipulation of a shared object with both hands (predictable coupling), manipulation of two independent objects without (uncoupled) and with external interference on one of the objects (unpredictable coupling). Results: We found a task-specific reduction in co-activation during the predictable coupling compared to the other tasks. Less sensory gating, reflected in larger subcortical SEP amplitudes, was observed in the unpredictable coupling task. SAI behavior was closely linked to the subcortical SEP component indicating an important function of subcortical sites in predictability related SEP gating and their direct influence on M1 inhibition. Discussion: Together, these findings suggest that the unpredictable coupling task cannot only rely on predictive forward control and is compensated by enhancing co-activation and increasing the saliency for external stimuli by reducing sensory gating at subcortical level. This behavior might serve as a preparatory step to compensate for external disturbances and to enhance processing and integration of all incoming external stimuli to update the current sensorimotor state. In contrast, predictive forward control is accurate in the predictable coupling task due to the integrated sensory feedback from both hands where sensorimotor resources are economized by reducing muscular co-activation and increasing sensory gating.

11.
Exp Brain Res ; 241(9): 2333-2344, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37606713

RESUMEN

The sensory consequences of our actions appear attenuated to us. This effect has been reported for external sensations that are evoked by auditory or visual events and for body-related sensations which are produced by self-touch. In the present study, we investigated the effects of prolonged exposure to a delay between an action and the generated sensation on sensory attenuation for self-touch. Previously, it has been shown that after being presented to a systematic exposure delay, artificially delayed touch can feel more intense and non-delayed touches can appear less intense. Here, we investigated the temporal spread of the temporal recalibration effect. Specifically, we wondered whether this temporal recalibration effect would affect only the delay that was used during exposure trials or if it would also modulate longer test delays. In the first two experiments, we tested three test delays (0, 100 and 400 ms) either in randomized or in blocked order. We found sensory attenuation in all three test intervals but no effect of the exposure delay. In Experiment 3, we replicated the experiment by Kilteni et al. (ELife 8:e42888, 2019. https://doi.org/10.7554/eLife.42888 ) and found evidence for temporal recalibration by exposure delay. Our data show that the temporal selectivity of sensory attenuation of self-touch depends on presenting a singular test delay only. Presenting multiple test delays leads to a temporally broad spread of sensory attenuation.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Emociones
12.
Front Neural Circuits ; 17: 1197278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529715

RESUMEN

Introduction: On Earth, self-produced somatosensory stimuli are typically perceived as less intense than externally generated stimuli of the same intensity, a phenomenon referred to as somatosensory attenuation (SA). Although this phenomenon arises from the integration of multisensory signals, the specific contribution of the vestibular system and the sense of gravity to somatosensory cognition underlying distinction between self-generated and externally generated sensations remains largely unknown. Here, we investigated whether temporary modulation of the gravitational input by head-down tilt bed rest (HDBR)-a well-known Earth-based analog of microgravity-might significantly affect somatosensory perception of self- and externally generated stimuli. Methods: In this study, 40 healthy participants were tested using short-term HDBR. Participants received a total of 40 non-painful self- and others generated electrical stimuli (20 self- and 20 other-generated stimuli) in an upright and HDBR position while blindfolded. After each stimulus, they were asked to rate the perceived intensity of the stimulation on a Likert scale. Results: Somatosensory stimulations were perceived as significantly less intense during HDBR compared to upright position, regardless of the agent administering the stimulus. In addition, the magnitude of SA in upright position was negatively correlated with the participants' somatosensory threshold. Based on the direction of SA in the upright position, participants were divided in two subgroups. In the subgroup experiencing SA, the intensity rating of stimulations generated by others decreased significantly during HDBR, leading to the disappearance of the phenomenon of SA. In the second subgroup, on the other hand, reversed SA was not affected by HDBR. Conclusion: Modulation of the gravitational input by HDBR produced underestimation of somatosensory stimuli. Furthermore, in participants experiencing SA, the reduction of vestibular inputs by HDBR led to the disappearance of the SA phenomenon. These findings provide new insights into the role of the gravitational input in somatosensory perception and have important implications for astronauts who are exposed to weightlessness during space missions.


Asunto(s)
Vestíbulo del Laberinto , Ingravidez , Humanos , Reposo en Cama , Inclinación de Cabeza , Vestíbulo del Laberinto/fisiología , Percepción
13.
Brain Sci ; 13(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37371325

RESUMEN

The concept of anomalous self-experience, also termed Self-Disorder, has attracted both clinical and research interest, as empirical studies suggest such experiences specifically aggregate in and are a core feature of schizophrenia spectrum disorders. A comprehensive neurophenomenological understanding of Self-Disorder may improve diagnostic and therapeutic practice. This systematic review aims to evaluate anatomical, physiological, and neurocognitive correlates of Self-Disorder (SD), considered a core feature of Schizophrenia Spectrum Disorders (SSDs), towards developing a neurophenomenological understanding. A search of the PubMed database retrieved 285 articles, which were evaluated for inclusion using PRISMA guidelines. Non-experimental studies, studies with no validated measure of Self-Disorder, or those with no physiological variable were excluded. In total, 21 articles were included in the review. Findings may be interpreted in the context of triple-network theory and support a core dysfunction of signal integration within two anatomical components of the Salience Network (SN), the anterior insula and dorsal anterior cingulate cortex, which may mediate connectivity across both the Default Mode Network (DMN) and Fronto-Parietal Network (FPN). We propose a theoretical Triple-Network Model of Self-Disorder characterized by increased connectivity between the Salience Network (SN) and the DMN, increased connectivity between the SN and FPN, decreased connectivity between the DMN and FPN, and increased connectivity within both the DMN and FPN. We go on to describe translational opportunities for clinical practice and provide suggestions for future research.

14.
Cereb Cortex ; 33(14): 9130-9143, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37288477

RESUMEN

Action-effect predictions are believed to facilitate movement based on its association with sensory objectives and suppress the neurophysiological response to self- versus externally generated stimuli (i.e. sensory attenuation). However, research is needed to explore theorized differences in the use of action-effect prediction based on whether movement is uncued (i.e. volitional) or in response to external cues (i.e. stimulus-driven). While much of the sensory attenuation literature has examined effects involving the auditory N1, evidence is also conflicted regarding this component's sensitivity to action-effect prediction. In this study (n = 64), we explored the influence of action-effect contingency on event-related potentials associated with visually cued and uncued movement, as well as resultant stimuli. Our findings replicate recent evidence demonstrating reduced N1 amplitude for tones produced by stimulus-driven movement. Despite influencing motor preparation, action-effect contingency was not found to affect N1 amplitudes. Instead, we explore electrophysiological markers suggesting that attentional mechanisms may suppress the neurophysiological response to sound produced by stimulus-driven movement. Our findings demonstrate lateralized parieto-occipital activity that coincides with the auditory N1, corresponds to a reduction in its amplitude, and is topographically consistent with documented effects of attentional suppression. These results provide new insights into sensorimotor coordination and potential mechanisms underlying sensory attenuation.


Asunto(s)
Percepción Auditiva , Electroencefalografía , Percepción Auditiva/fisiología , Potenciales Evocados/fisiología , Atención/fisiología , Sonido , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos
15.
Biol Psychol ; 180: 108575, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156324

RESUMEN

Tones that are generated by self-performed actions elicit attenuated N1 and P2 amplitudes, as measured by electroencephalography (EEG), compared to identical external tones, which is referred to as neurophysiological sensory attenuation (SA). At the same time, self-generated tones are perceived as less loud compared to external tones (perceptual SA). Action observation led in part to a similar neurophysiological and perceptual SA. The perceptual SA in observers was found in comparison to tones that were temporally predictable, and one study suggested that perceptual SA in observers might depend on the cultural dimension of individualism. In this study, we examined neurophysiological SA for tones elicited by self-performed and observed actions during simultaneous EEG acquisitions in two participants, extending the paradigm with a visual cue condition controlling for effects of temporal predictability. Moreover, we investigated the effect of individualism on neurophysiological SA in action observation. Relative to un-cued external tones, the N1 was only descriptively reduced for tones that were elicited by self-performed or observed actions and significantly attenuated for cued external tones. A P2 attenuation effect relative to un-cued external tones was found in all three conditions, with stronger effects for self- and other-generated tones than for cued external tones. We found no evidence for an effect of individualism. These findings add to previous evidence for neurophysiological SA in action performance and observation with a paradigm well-controlled for the effect of predictability and individualism, showing differential effects of the former on the N1 and P2 components, and no effect of the latter.


Asunto(s)
Potenciales Evocados Auditivos , Potenciales Evocados , Humanos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica , Electroencefalografía , Señales (Psicología) , Percepción Auditiva/fisiología
16.
Neuropsychologia ; 182: 108526, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870472

RESUMEN

Sensory attenuation of the auditory P2 event-related potential (ERP) has been shown to differentiate the sensory consequences of one's own from others' action in joint action contexts. However, recent evidence suggests that when people coordinate joint actions over time, temporal orienting of attention might simultaneously contribute to enhancing the auditory P2. The current study employed a joint tapping task in which partners produced tone sequences together to examine whether temporal orienting influences auditory ERP amplitudes during the time window of self-other differentiation. Our findings demonstrate that the combined requirements of coordinating with a partner toward a joint goal and immediately adjusting to the partner's tone timing enhance P2 amplitudes elicited by the partner's tone onsets. Furthermore, our findings replicate prior evidence for self-specific sensory attenuation of the auditory P2 in joint action, and additionally demonstrate that it occurs regardless of the coordination requirements between partners. Together, these findings provide evidence that temporal orienting and sensory attenuation both modulate the auditory P2 during joint action and suggest that both processes play a role in facilitating precise interpersonal coordination between partners.


Asunto(s)
Percepción Auditiva , Potenciales Evocados Auditivos , Humanos , Potenciales Evocados , Sonido , Atención , Estimulación Acústica , Electroencefalografía
17.
Psychophysiology ; 60(8): e14295, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36966486

RESUMEN

Efference copy-based forward model mechanisms may help us to distinguish between self-generated and externally-generated sensory consequences. Previous studies have shown that self-initiation modulates neural and perceptual responses to identical stimulation. For example, event-related potentials (ERPs) elicited by tones that follow a button press are reduced in amplitude relative to ERPs elicited by passively attended tones. However, previous EEG studies investigating visual stimuli in this context are rare, provide inconclusive results, and lack adequate control conditions with passive movements. Furthermore, although self-initiation is known to modulate behavioral responses, it is not known whether differences in the amplitude of ERPs also reflect differences in perception of sensory outcomes. In this study, we presented to participants visual stimuli consisting of gray discs following either active button presses, or passive button presses, in which an electromagnet moved the participant's finger. Two discs presented visually 500-1250 ms apart followed each button press, and participants judged which of the two was more intense. Early components of the primary visual response (N1 and P2) over the occipital electrodes were suppressed in the active condition. Interestingly, suppression in the intensity judgment task was only correlated with suppression of the visual P2 component. These data support the notion of efference copy-based forward model predictions in the visual sensory modality, but especially later processes (P2) seem to be perceptually relevant. Taken together, the results challenge the assumption that N1 differences reflect perceptual suppression and emphasize the relevance of the P2 ERP component.


Asunto(s)
Electroencefalografía , Potenciales Evocados Auditivos , Humanos , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados/fisiología , Dedos , Percepción , Percepción Auditiva/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos
18.
Eur J Neurol ; 30(5): 1453-1458, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773013

RESUMEN

BACKGROUND: Chronic fatigue is a significant symptom in several diseases including traumatic and degenerative neurological disorders. While several studies have investigated the correlates of chronic fatigue, there is as yet no unifying framework to explain chronic fatigue. METHODS: In this narrative review, I investigate the role of selective attention in the development of chronic fatigue and discuss results within the framework of the sensory attenuation model of fatigue, which posits that fatigue is the phenomenological output of altered attention to sensory input. Following a short introduction of this framework, I present results from investigations that address attentional mechanisms in fatigue in multiple sclerosis, stroke, traumatic brain injury and Parkinson's disease. RESULTS: Attention was quantified in all four disease models using a variety of outcome measures, including behavioural, neurophysiological, structural and functional brain connectivity. The range of measures precluded direct comparison of results across disease conditions; however, in all four disease models there was evidence of poor selective attention that explained levels of chronic fatigue, supporting the sensory attenuation model of fatigue as a disease-independent mechanism of fatigue. Evidence was lacking to draw any conclusions about the direction of causality. CONCLUSION: The role of selective attention in development of fatigue is indicated. Future studies must focus on establishing causality and exploring attentional circuitry as a potential therapeutic target.


Asunto(s)
Síndrome de Fatiga Crónica , Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Síndrome de Fatiga Crónica/complicaciones , Enfermedades del Sistema Nervioso/complicaciones , Encéfalo , Esclerosis Múltiple/complicaciones
19.
Behav Res Methods ; 55(6): 2979-2988, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002628

RESUMEN

The force-matching task integrates haptic technology and electrical engineering to determine an individual's level of sensory attenuation to somatic stimuli. The task requires a detailed methodology to facilitate reliable and replicable estimates, and there has been a distinct lack of re-evaluation of the methodological processes related to this paradigm. In this task, participants are asked to match a force delivered to their finger, either by pressing directly on their own finger with their other hand (known as the direct condition) or by controlling the device using an external potentiometer to control the force indirectly through a torque motor (known as the slider condition). We analysed 138 participants to determine 1) the optimal number of replications (2, 4, 6, or 8 replications) of the target force, 2) the optimal time window (1-1.5 s, 1.5-2 s, 2-2.5 s and 2.5-3 s) to extract the estimate of sensory attenuation, 3) if participants' performance during the task improved, worsened or was stable across the experimental period regardless of condition, and 4) if learning effects were related to psychological traits. Results showed that the number of replications of the target forces may be reduced from 8 without compromising the estimate of sensory attenuation, the optimal time window for the extraction of the matched force is 2.5-3 s, the performance is stable over the duration of the experiment and not impacted by the measured psychological traits. In conclusion, we present a number of methodological considerations which improve the efficiency and reliability of the force-matching task. HIGHLIGHTS: • The force-matching task determines an individual's level of sensory attenuation • The optimal number of replications of the target force may be reduced from 8 • The optimal time window to extract the matched force is 2.5-3.0 s • The estimate of sensory attenuation is stable across the duration of the task.


Asunto(s)
Dedos , Percepción del Tiempo , Humanos , Reproducibilidad de los Resultados , Mano , Desempeño Psicomotor
20.
Conscious Cogn ; 107: 103460, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577211

RESUMEN

Virtual reality (VR) has established itself as a useful tool in the study of human perception in the laboratory. A recent study introduced a new approach to examine visual sensory attenuation (SA) effects in VR. Hand movements triggered the appearance of Gabor stimuli, which were either presented behind the participant's hand - not rendered in VR ("virtual occlusion") - or elsewhere on the display. Virtual occlusion led to a rightward shift of the psychometric curve, suggesting that self-generated hand movements reduced the perceived contrast of the stimulus. Since such attenuation effects might provide a window into the predictive processing of the sensory and cognitive apparatus, we sought to better understand the nature of the virtual occlusion effects. In our study, the presentation of test stimuli was either self-initiated, self-initiated with a variable delay, or triggered externally; the test stimuli were occluded or not. In conflict with our hypothesis, we found moderate to strong evidence for an absence of any horizontal shifts between the psychometric curves. However, virtual occlusion was associated with a decrease in the slope of the psychometric function. Our results suggest that virtual occlusion attenuated the relative perceptual sensitivity, so that participants had more difficulty discriminating contrast differences when the test stimulus was presented behind the hand. We tentatively conclude that, in the visual domain, the discriminability of stimulus intensity is modified by internal predictive cues (i.e., proprioception), possibly linked to shifts in covert spatial attention.


Asunto(s)
Movimiento , Realidad Virtual , Humanos , Mano , Propiocepción , Percepción , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA