Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Alzheimers Dis Rep ; 8(1): 561-574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746630

RESUMEN

Background: Alzheimer's disease may be effectively treated with acupoint-based acupuncture, which is acknowledged globally. However, more research is needed to understand the alterations in acupoints that occur throughout the illness and acupuncture treatment. Objective: This research investigated the differences in acupoint microcirculation between normal mice and AD animals in vivo. This research also examined how acupuncture affected AD animal models and acupoint microcirculation. Methods: 6-month-old SAMP8 mice were divided into two groups: the AD group and the acupuncture group. Additionally, SAMR1 mice of the same month were included as the normal group. The study involved subjecting a group of mice to 28 consecutive days of acupuncture at the ST36 (Zusanli) and CV12 (Zhongwan) acupoints. Following this treatment, the Morris water maze test was conducted to assess the mice's learning and memory abilities; the acoustic-resolution photoacoustic microscope (AR-PAM) imaging system was utilized to observe the microcirculation in CV12 acupoint region and head-specific region of each group of mice. Results: In comparison to the control group, the mice in the AD group exhibited a considerable decline in their learning and memory capabilities (p < 0.01). In comparison to the control group, the vascular in the CV12 region and head-specific region in mice from the AD group exhibited a considerable reduction in length, distance, and diameter r (p < 0.01). The implementation of acupuncture treatment had the potential to enhance the aforementioned condition to a certain degree. Conclusions: These findings offered tangible visual evidence that supports the ongoing investigation into the underlying mechanisms of acupuncture's therapeutic effects.

2.
Brain Res ; 1831: 148814, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38395250

RESUMEN

BACKGROUND: Influenced by the global aging population, the incidence of Alzheimer's disease (AD) has increased sharply. In addition to increasing ß-amyloid plaque deposition and tau tangle formation, neurogenesis dysfunction has recently been observed in AD. Therefore, promoting regeneration to improve neurogenesis and cognitive dysfunction can play an effective role in AD treatment. Acupuncture and moxibustion have been widely used in the clinical treatment of neurodegenerative diseases because of their outstanding advantages such as early, functional, and benign two-way adjustment. It is urgent to clarify the effectiveness, greenness, and safety of acupuncture and moxibustion in promoting neurogenesis in AD treatment. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice at various ages were used as experimental models to simulate the pathology and behaviors of AD mice. Behavioral experiments, immunohistochemistry, Western blot, and immunofluorescence experiments were used for comparison between different groups. RESULTS: Acupuncture and moxibustion could increase the number of PCNA+ DCX+ cells, Nissl bodies, and mature neurons in the hippocampal Dentate gyrus (DG) of SAMP8 mice, restore the hippocampal neurogenesis, delay the AD-related pathological presentation, and improve the learning and memory abilities of SAMP8 mice. CONCLUSION: The pathological process underlying AD and cognitive impairment were changed positively by improving the dysfunction of neurogenesis. This indicates the promising role of acupuncture and moxibustion in the prevention and treatment of AD.


Asunto(s)
Terapia por Acupuntura , Enfermedad de Alzheimer , Moxibustión , Ratones , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Hipocampo/patología , Neurogénesis/fisiología , Giro Dentado/patología , Modelos Animales de Enfermedad
3.
Phytomedicine ; 123: 155281, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103316

RESUMEN

BACKGROUND: Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE: To determine whether GP improves the pathology of AD and sarcopenia. METHODS: AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS: GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION: Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.


Asunto(s)
Enfermedad de Alzheimer , Caenorhabditis elegans , Iridoides , Ratones , Animales , Enfermedad de Alzheimer/patología , Envejecimiento , Atrofia Muscular/tratamiento farmacológico
4.
Front Nutr ; 10: 1235780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575325

RESUMEN

Healthcare is an emerging industry with significant market potential in the 21st century. Therefore, this study aimed to evaluate the benefits of tube feeding Huáng qí and its complexes for 8 weeks on 3-month-old senescence-accelerated mouse prone-8 (SAMP8) mice, 48 in total, randomly divided into 3 groups including control, Huáng qí extract [820 mg/kg Body weight (BW)/day], and Huáng qí complexes (6.2 mL /kg BW/day), where each group consisted of males (n = 8) and females (n = 8). Behavioral tests (locomotion test and aging score assessment on week 6, the single-trial passive avoidance test on week 7, and the active shuttle avoidance test on week 8) were conducted to evaluate the ability of the mice to learn and remember. In addition, after sacrificing the animals, the blood and organs were measured for antioxidant and aging bioactivities, including malondialdehyde (MDA) content and superoxide dismutase (SOD) activity and catalase activities (CAT), and the effects on promoting aging in SAMP8 mice were investigated. The findings showed that Huáng qí enhanced locomotor performance and had anti-aging effects, with positive effects on health, learning, and memory in SAMP-8 mice (p < 0.05), whether applied as a single agent (820 mg/kg BW/day) or as a complex (6.2 mL/kg BW/day) (p < 0.05). Based on existing strengths, a more compelling platform for clinical validation of human clinical evidence will be established to enhance the development and value-added of astragalus-related products while meeting the diversified needs of the functional food market.

5.
Front Pharmacol ; 14: 1181226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256236

RESUMEN

Background: Traditional Chinese medicines exhibit promising preventive effects on Alzheimer's disease. Chaihu Shugan San (CSS) is a well-known traditional herbal formula whose several kinds of ingredients have the potential of ameliorating Alzheimer's disease. The present study aimed to evaluate the effects of CSS on the microbiota-gut-brain axis and cognitive deficits of senescence-accelerated mouse prone 8 (SAMP8) mice as well as investigate the underlying mechanisms. Methods: Thirty 5-month-old SAMP8 mice were randomly divided into the model group (SAMP8), CSS low-dose treatment group (CSSL), and CSS high-dose treatment group (CSSH). Ten SAMR1 mice were used as the normal control, and ten SAMP8 mice treated with donepezil were used as the positive control of cognitive function. CSS was orally administrated to SAMP8 mice for 8 weeks. The Morris water maze test was used to evaluate cognitive function. Histological staining was used to observe neuronal injury and Aß deposition. Transmission electron microscopy was used to observe the synaptic ultrastructure. 16S rRNA gene analysis was performed to measure the changes in intestinal microbiota. Results: The results showed that CSS significantly improved the learning function and memory deficits of aged SAMP8 mice in the Morris water maze examination. CSS ameliorated neuronal injury, synaptic injuries, and Aß deposition in the brain of SAMP8 mice. In addition, CSS also significantly improved microbiota composition in terms of elevating Lactobacillus reuteri and decreasing Staphylococcus xylosus in the feces of aged SAMP8 mice. Conclusion: These findings suggested that CSS might have a preventive potential for cognitive deficits in aging through regulating gut microbiota, which paved the way for the application of CSS for prevention and therapeutic purposes for mild cognitive impairment as well as Alzheimer's disease.

6.
Appl Physiol Nutr Metab ; 48(5): 393-402, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36809211

RESUMEN

Folic acid (FA) could improve cognitive performance and attenuate brain cell injury in the aging brain; FA supplementation is also associated with inhibiting neural stem cell (NSC) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs in mice via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8). In this study, 4-month-old male SAMP8 mice were assigned equal numbers to four different diet groups (n = 15). Fifteen age-matched senescence-accelerated mouse resistant 1 mice, fed with the FA-normal diet, were used as the standard aging control group. After FA treatment for 6 months, all mice were sacrificed. NSC apoptosis, proliferation, oxidative damage, and telomere length were evaluated by immunofluorescence and Q-fluorescent in situ hybridization. The results showed that FA supplementation inhibited age-associated NSC apoptosis and prevented telomere attrition in the cerebral cortex of SAMP8 mice. Importantly, this effect might be explained by the decreased levels of oxidative damage. In conclusion, we demonstrate it may be one of the mechanisms by which FA inhibits age-associated NSC apoptosis by alleviating telomere length shortening.


Asunto(s)
Ácido Fólico , Células-Madre Neurales , Ratones , Masculino , Animales , Ácido Fólico/farmacología , Hibridación Fluorescente in Situ , Envejecimiento , Apoptosis , Telómero
7.
Aging (Albany NY) ; 14(18): 7300-7327, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36126192

RESUMEN

The most important risk factor for the development of sporadic Alzheimer's disease (AD) is ageing. Senescence accelerated mouse prone 8 (SAMP8) is a model of sporadic AD, with senescence accelerated resistant mouse (SAMR1) as a control. In this study, we aimed to determine the onset of senescence-induced neurodegeneration and the related potential therapeutic window using behavioral experiments, immunohistochemistry and western blotting in SAMP8 and SAMR1 mice at 3, 6 and 9 months of age. The Y-maze revealed significantly impaired working spatial memory of SAMP8 mice from the 6th month. With ageing, increasing plasma concentrations of proinflammatory cytokines in SAMP8 mice were detected as well as significantly increased astrocytosis in the cortex and microgliosis in the brainstem. Moreover, from the 3rd month, SAMP8 mice displayed a decreased number of neurons and neurogenesis in the hippocampus. From the 6th month, increased pathological phosphorylation of tau protein at Thr231 and Ser214 was observed in the hippocampi of SAMP8 mice. In conclusion, changes specific for neurodegenerative processes were observed between the 3rd and 6th month of age in SAMP8 mice; thus, potential neuroprotective interventions could be applied between these ages.


Asunto(s)
Hipocampo , Proteínas tau , Envejecimiento/fisiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Front Nutr ; 9: 977287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118772

RESUMEN

Since the 1990s, the prevalence of mental illnesses, such as depression, has been increasing annually and has become a major burden on society. Due to the many side effects of antidepressant drugs, the development of a complementary therapy from natural materials is an urgent need. Therefore, this study used a complex extract of chlorella and lion's mane mushroom and evaluated its antidepressant effects. Six-month-old male senescence-accelerated mice prone-8 (SAMP8) were divided into positive control; negative control; and low, medium, and high-dose groups. All groups were treated with corticosterone (CORT) at 40 mg/Kg/day for 21- days to induce depression in the animals, and the effects of different test substances on animal behavior was observed. The positive control group was intraperitoneally injected with a tricyclic antidepressant (Fluoxetine, as tricyclic antidepressant), the control group was given ddH2O, and the test substance groups were administered test samples once daily for 21 days. The open field test (OFT) and forced swimming test (FST) were applied for behavior analyses of depression animal models. The OFT results showed that the mice in the positive control and the medium-, and high-dose groups demonstrated a significantly prolonged duration in the central area and a significantly increased travel distance. In the FST, the positive control and the medium, and high-dose groups displayed significantly reduced immobility times relative to the control group. The blood analysis results showed significant decreases in triglyceride and blood urea nitrogen levels relative to the positive control and the medium- and high-dose groups. Notably, in the positive control and the medium- and high-dose groups, brain-derived neurotrophic factor (BDNF) increase by more than in the control group. In summary, medium and high dose of extract of chlorella and lion's mane mushroom could improve depression behavior in animals and have the potential to be antidepressant health care products.

9.
Nutrients ; 14(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807886

RESUMEN

Buckwheat is an important pseudo-cereal crop worldwide. This study investigated whether long-term administration of buckwheat can suppress age-related cognitive decline in senescence-accelerated mouse prone 8 (SAMP8) mice. For 26 weeks, 18-week-old male SAMP8 mice were fed a standard diet containing 5% (w/w) buckwheat, Tartary buckwheat, wheat, or rice flour. In the Barnes maze and passive avoidance tests, mice fed buckwheat whole flour (BWF) showed improved cognitive performance compared to those fed a control diet, while no improvement was noticed in case of the other diets. Analysis of the gut microbiota showed that BWF and buckwheat outer flour administration increased the abundance of Lactococcus and Ruminiclostridium, respectively, at the genus level. The expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic Arc and PSD95, and the mature neuronal marker NeuN in the hippocampus were increased after BWF administration, which was induced by the activation of the ERK/CREB signaling pathway and histone H3 acetylation. A similar increase in cognitive performance-related hippocampal BDNF expression in SAMP8 mice was observed after the oral administration of starch prepared from BWF. Therefore, the long-term administration of BWF suppresses cognitive decline by increasing hippocampal BDNF production in SAMP8 mice.


Asunto(s)
Disfunción Cognitiva , Fagopyrum , Envejecimiento/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/prevención & control , Harina/análisis , Hipocampo/metabolismo , Masculino , Ratones , Almidón/metabolismo
10.
Acupunct Med ; 40(5): 463-469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35232269

RESUMEN

OBJECTIVE: To explore the mechanism by which electroacupuncture (EA) upregulates triggering receptor expressed on myeloid cells 2 (TREM2) protein in the hippocampus of Alzheimer's disease (AD) model animals from the perspective of TREM2 DNA methylation. METHODS: In total, 24 eight-month-old senescence-accelerated mouse prone 8 (SAMP8) mice were divided into an (untreated) AD group (n = 8), donepezil group (receiving donepezil treatment, n = 8) or EA group (receiving an EA intervention, n = 8). A healthy control group comprising 8-month-old senescence-accelerated mouse resistant 1 (SAMR1) mice (n = 8) was also included. Western blotting, bisulfite sequencing, and oxidative bisulfite sequencing were applied to test the relative expression of TREM2 protein and the methylation levels of the TREM2 gene. RESULTS: EA significantly upregulated the relative expression of TREM2 protein (p < 0.01), downregulated the 5-methylcytosine level (p < 0.01) and upregulated the 5-hydroxymethylcytosine level (p < 0.05) in the hippocampus. CONCLUSION: Downregulation of 5-methylcytosine levels and upregulation of 5-hydroxymethylcytosine levels in the TREM2 gene might be the mechanism by which EA promotes the expression of TREM2 protein.


Asunto(s)
Enfermedad de Alzheimer , Electroacupuntura , 5-Metilcitosina/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Metilación de ADN/genética , Modelos Animales de Enfermedad , Donepezilo , Hipocampo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
11.
Geriatr Gerontol Int ; 22(2): 160-167, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34936182

RESUMEN

AIM: Sarcopenia - aging-related loss of muscle mass and muscle strength - is a key feature of the frailty model. In the present study, we aimed to elucidate the molecular biological changes associated with aging in the extensor digitorum longus muscle of senescence-accelerated mouse prone 8 mouse model by capillary electrophoresis-mass spectrometry. METHODS: Three groups of senescence-accelerated mouse prone 8 mice were used, namely, 12-week-old (young; n = 5), 40-week-old (elderly; n = 5) and 55-week-old mice (late elderly; n = 5). The extensor digitorum longus muscle was collected. After preliminary analyses, metabolome analysis was carried out by capillary electrophoresis-mass spectrometry. Additionally, we examined whether the activity of enzymes in the metabolic pathway fluctuated with aging, by real-time polymerase chain reaction. RESULTS: Among the 116 water-soluble metabolites associated with the central energy metabolism pathway, changes were observed in 19 metabolites between 12- and 40 -weeks-old, in 40 metabolites between 40- and 55-weeks-old, and in 57 metabolites between 12- and 55-weeks-old. The fluctuated metabolites that were common among the groups were Val, putrescine and His. The levels of putrescine, associated with cell proliferation, protein synthesis and nucleic acid synthesis, and ß-Ala and His, a component of carnosine that is characterized by its anti-oxidant and anti-fatigue effects, decreased with age. CONCLUSIONS: We confirmed that there were two aging-related metabolic changes in the extensor digitorum longus muscle of senescence-accelerated mouse prone 8 mice. Based on the changes in metabolites, cell senescence and fatigue in the extensor digitorum longus muscle might increase in old mice compared with those in young mice, showing molecular biological changes with aging. Geriatr Gerontol Int 2022; 22: 160-167.


Asunto(s)
Envejecimiento , Músculo Esquelético , Sarcopenia , Animales , Carnosina , Ratones , Músculo Esquelético/patología
12.
Nutrients ; 13(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34684662

RESUMEN

There have been many reports on the neuroprotective effects of Hericium erinaceus mycelium, in which the most well-known active compounds found are diterpenoids, such as erinacine A. Previously, erinacine A-enriched Hericeum erinaceus mycelium (EAHEM) was shown to decrease amyloid plaque aggregation and improve cognitive disability in Alzheimer's disease model APP/PS1 mice. However, its effects on brain aging have not yet been touched upon. Here, we used senescence accelerated mouse prone 8 (SAMP8) mice as a model to elucidate the mechanism by which EAHEM delays the aging of the brain. Three-month-old SAMP8 mice were divided into three EAHEM dosage groups, administered at 108, 215 and 431 mg/kg/BW/day, respectively. During the 12th week of EAHEM feeding, learning and memory of the mice were evaluated by single-trial passive avoidance and active avoidance test. After sacrifice, the amyloid plaques, induced nitric oxidase synthase (iNOS) activity, thiobarbituric acid-reactive substances (TBARS) and 8-OHdG levels were analyzed. We found that the lowest dose of 108 mg/kg/BW EAHEM was sufficient to significantly improve learning and memory in the passive and active avoidance tests. In all three EAHEM dose groups, iNOS, TBARS and 8-OHdG levels all decreased significantly and showed a dose-dependent response. The results indicate that EAHEM improved learning and memory and delayed degenerative aging in mice brains.


Asunto(s)
Envejecimiento/patología , Disfunción Cognitiva/tratamiento farmacológico , Progresión de la Enfermedad , Diterpenos/uso terapéutico , Hericium/química , Micelio/química , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Reacción de Prevención , Conducta Animal , Encéfalo/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Diterpenos/farmacología , Femenino , Masculino , Ratones , Placa Amiloide/patología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Nutrients ; 13(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445020

RESUMEN

(1) Background: An age-related cognitive decline is commonly affecting the life of elderly with symptoms involved in progressive impairments to memory and learning. It has been proposed that probiotics could modulate age-related neurological disorders via the gut-brain axis. (2) Methods: To investigate the anti-aging effect of probiotic Lactobacillus plantarum GKM3, both survival tests and cognitive experiments were conducted in the SAMP8 mice model. The six-month-old SAMP8 (n = 20 in each gender) were fed with probiotic GKM3 at a dosage of 5.1 × 109 and 1.0 × 109 cfu/ kg B.W./day until their natural death. Then, the life span was investigated. Three-month-old SAMP8 (n = 10 in each gender) were administered GKM3 for 14 weeks. Then, the behavior tests and oxidation parameters were recorded. (3) Results: GKM3 groups showed significantly increased latency in the passive avoidance test and time of successful avoidance in the active avoidance test. The TBARS and 8-OHdG from mice brains also showed a significant reduction in the groups treated with GKM3. In addition, lower accumulation of the amyloid-ß protein was found in SAMP8 mice brains with the supplement of GKM3. (4) Conclusions: These results indicated that L. plantarum GKM3 delayed the process of aging, alleviated age-related cognitive impairment, and reduced oxidative stress.


Asunto(s)
Conducta Animal , Encéfalo/microbiología , Cognición , Envejecimiento Cognitivo , Lactobacillus plantarum/fisiología , Estrés Oxidativo , Probióticos , Retención en Psicología , Factores de Edad , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Longevidad , Masculino , Ratones Endogámicos
14.
Front Cell Dev Biol ; 9: 698442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368149

RESUMEN

The liver is sensitive to aging because the risk of hepatopathy, including fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, increases dramatically with age. Long non-coding RNAs (lncRNAs) are >200 nucleotides long and affect many pathological and physiological processes. A potential link was recently discovered between lncRNAs and liver aging; however, comprehensive and systematic research on this topic is still limited. In this study, the mouse liver genome-wide lncRNA profiles of 8-month-old SAMP8 and SAMR1 models were explored through deep RNA sequencing. A total of 605,801,688 clean reads were generated. Among the 2,182 identified lncRNAs, 28 were differentially expressed between SAMP8 and SAMR1 mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) surveys showed that these substantially dysregulated lncRNAs participated in liver aging from different aspects, such as lipid catabolic (GO: 0016042) and metabolic pathways. Further assessment was conducted on lncRNAs that are most likely to be involved in liver aging and related diseases, such as LNC_000027, LNC_000204E, NSMUST00000144661.1, and ENSMUST00000181906.1 acted on Ces1g. This study provided the first comprehensive dissection of lncRNA landscape in SAMP8 mouse liver. These lncRNAs could be exploited as potential targets for the molecular-based diagnosis and therapy of age-related liver diseases.

15.
J Nutr Biochem ; 97: 108796, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102282

RESUMEN

Disturbed deoxythymidine triphosphate biosynthesis due to the inhibition of thymidylate synthase (TS) can lead to uracil accumulation in DNA, eventually, lead to neurocytes apoptosis and cognitive decline. Folic acid supplementation delayed cognitive decline and neurodegeneration in senescence-accelerated mouse prone 8 (SAMP8). Whether folic acid, one of nutrition factor, the effect on the expression of TS is unknown. The study aimed to determine if folic acid supplementation could alleviate age-related cognitive decline and apoptosis of neurocytes by increasing TS expression in SAMP8 mice. According to folic acid concentration in diet, four-month-old male SAMP8 mice were randomly divided into three different diet groups by baseline body weight in equal numbers. Moreover, to evaluate the role of TS, a TS inhibitor was injected intraperitoneal. Cognitive test, apoptosis rates of neurocytes, expression of TS, relative uracil level in telomere, and telomere length in brain tissue were detected. The results showed that folic acid supplementation decreased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, alleviated telomere length shorting, increased expression of TS, then decreased apoptosis rates of neurocytes, and alleviated cognitive performance in SAMP8 mice. Moreover, at the same concentration of folic acid, TS inhibitor raltitrexed increased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, and exacerbated telomere length shorting, decreased expression of TS, then increased apoptosis rates of neurocytes, and decreased cognitive performance in SAMP8 mice. In conclusion, folic acid supplementation alleviated age-related cognitive decline and inhibited apoptosis of neurocytes by increasing TS expression in SAMP8 mice.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Disfunción Cognitiva/dietoterapia , Suplementos Dietéticos , Ácido Fólico/administración & dosificación , Neuronas/fisiología , Nucleótidos de Timina/biosíntesis , Animales , Apoptosis , Ácido Fólico/sangre , Ácido Fólico/metabolismo , Masculino , Memoria , Ratones , Prueba del Laberinto Acuático de Morris , Quinazolinas/farmacología , Acortamiento del Telómero , Tiofenos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Uracilo/metabolismo
16.
Biol Pharm Bull ; 44(1): 32-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390547

RESUMEN

Sarcopenia is a disease whose symptoms include decreased muscle mass and weakened muscle strength with age. In sarcopenia, decreased production of insulin-like growth factor-1 (IGF-1) increases ubiquitin ligases, such as Atrogin1 and Muscle RING-Finger Protein-1 (MuRF1), by activating forkhead box O (FOXO), and inflammatory cytokines and oxidative stress increase the expression of ubiquitin ligases by activating the transcription factor nuclear factor-kappa B (NF-κB). In addition, increased levels of ubiquitin ligases cause skeletal muscle atrophy. Conversely, sirtuin 1 (Sirt1) is known to regulate the expression of ubiquitin ligases by suppressing the activities of NF-κB and FOXO. In this study, we evaluated the effect that juzentaihoto hot water extract (JTT) has on skeletal muscle atrophy and motor function by administering it to senescence-accelerated mouse prone-8 (SAMP8). The group treated with JTT displayed larger gastrocnemius muscle (GA) and extensor digitorum longus (EDL) weights, larger GA muscle fiber cross-sectional areas, and motor function decline during rota-rod tests. JTT also increased IGF-1 serum levels, as well as mRNA Sirt1 levels in GA. Serum levels of tumor necrosis factor-α, interleukin-6, and mRNA levels of Atrogin1 and MuRF1 in GA were reduced by JTT. The muscle fiber cross-sectional area of GA was correlated with the mRNA levels of Sirt1 in GA. The results of this study suggested that JTT administration suppresses skeletal muscle atrophy and motor function decline in SAMP8 mice. This effect may be associated with the increased expression levels of Sirt1 and IGF-1 by JTT.


Asunto(s)
Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Actividad Motora/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Sirtuina 1/biosíntesis
17.
J Adv Res ; 34: 1-12, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35024177

RESUMEN

Introduction: Alzheimer's disease (AD) is a progressive brain disorder, and one of the most common causes of dementia and amnesia. Due to the complex pathogenesis of AD, the underlying mechanisms remain unclear. Although scientists have made increasing efforts to develop drugs for AD, no effective therapeutic agents have been found. Objectives: Natural products and their constituents have shown promise for treating neurodegenerative diseases, including AD. Thus, in-depth study of medical plants, and the main active ingredients thereof against AD, is necessary to devise therapeutic agents. Methods: In this study, N2a/APP cells and SAMP8 mice were employed as in vitro and in vivo models of AD. Multiple molecular biological methods were used to investigate the potential therapeutic actions of oxyphylla A, and the underlying mechanisms. Results: Results showed that oxyphylla A, a novel compound extracted from Alpinia oxyphylla, could reduce the expression levels of amyloid precursor protein (APP) and amyloid beta (Aß) proteins, and attenuate cognitive decline in SAMP8 mice. Further investigation of the underlying mechanisms showed that oxyphylla A exerted an antioxidative effect through the Akt-GSK3ß and Nrf2-Keap1-HO-1 pathways.Conclusions.Taken together, our results suggest a new horizon for the discovery of therapeutic agents for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Caproatos , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Cresoles , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt
18.
CNS Neurol Disord Drug Targets ; 19(4): 276-289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32496993

RESUMEN

BACKGROUND: Studies have found that autophagy could promote the clearance of Aß. To promote and maintain the occurrence of autophagy in Alzheimer's Disease (AD) might be a potential way to reduce neuronal loss and improve the learning and memory of AD. OBJECTIVE: To investigate the possible mechanisms of Yishen Huazhuo Decoction (YHD) against AD model. METHODS: Forty 7-month-old male SAMP8 mice were randomly divided into model (P8) group and YHD group, 20 in each group, with 20 SAMR1 mice as control (R1) group. All mice were intragastrically administered for 4 weeks, YHD at the dosage of 6.24g/kg for YHD group, and distilled water for P8 group and R1 group. Morris Water Maze (MWM) test, Nissl's staining, TEM, TUNEL staining, immunofluorescence double staining, and western blot analysis were applied to learning and memory, structure and ultrastructure of neurons, autophagosome, apoptosis index, Aß, LAMP1, and autophagy related proteins. RESULTS: The escape latency time of YHD group was significantly shorter on the 4th and 5th day during MWM test than those in P8 group (P=0.011, 0.008<0.05), and the number of crossing platform in YHD group increased significantly (P=0.02<0.05). Nissl's staining showed that the number of neurons in YHD group increased significantly (P<0.0001). TEM showed in YHD group that the nucleus of neurons was slightly irregular, with slightly reduced organelles, partially fused and blurred cristae and membrane of mitochondria. The apoptosis index of YHD group showed a decreasing trend, without statistically significant difference (P=0.093>0.05), while Caspase3 expression in YHD group was significantly lower (P=0.044<0.05). YHD could promote the clearance of Aß1-42 protein, improve the expression of Beclin-1 and p-Bcl2 proteins, reduce mTOR and p62 proteins. CONCLUSION: YHD could induce autophagy initiation, increase the formation of autophagosomes and autolysosome, promote the degradation of autophagy substrates, thereby regulating autophagy, and promoting the clearance of Aß1-42 to improve memory impairment in SAMP8 mice.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/efectos de los fármacos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/patología , Autofagosomas/ultraestructura , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Aprendizaje/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Lisosomas/ultraestructura , Memoria/efectos de los fármacos , Ratones , Prueba del Laberinto Acuático de Morris , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Fragmentos de Péptidos/metabolismo
19.
J Alzheimers Dis ; 76(2): 657-669, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32538851

RESUMEN

BACKGROUND: Dendrobium nobile is a well-known traditional Chinese herbal medicine used for age-related diseases. Dendrobium nobile Lindl. alkaloid (DNLA) is the active ingredient to improve learning and memory deficits in laboratory animals. OBJECTIVE: The aim of the present study was to examine the anti-aging effects of long-term administration of DNLA and metformin during the aging process in senescence-accelerated mouse-prone 8 (SAMP8) mice. METHODS: SAMP8 mice were orally given DNLA (20 and 40 mg/kg) or metformin (80 mg/kg) starting at 6 months of age until 12 months of age. Age-matched SAMR1 mice were used as controls. DNLA and metformin treatments ameliorated behavioral deficits of 12-month-old SAMP8 mice, as determined by Rotarod, Y-maze, and Open-field tests. RESULTS: DNLA and metformin treatments prevented brain atrophy and improved morphological changes in the hippocampus and cortex, as evidenced by Nissl and H&E staining for neuron damage and loss, and by SA-ß-gal staining for aging cells. DNLA and metformin treatments decreased amyloid-ß1-42, AßPP, PS1, and BACE1, while increasing IDE and neprilysin for Aß clearance. Furthermore, DNLA and metformin enhanced autophagy activity by increasing LC3-II, Beclin1, and Klotho, and by decreasing p62 in the hippocampus and cortex. CONCLUSION: The beneficial effects of DNLA were comparable to metformin in protecting against aging-related cognitive deficits, neuron aging, damage, and loss in SAMP8 mice. The mechanisms could be attributed to increased Aß clearance, activation of autophagy activity, and upregulation of Klotho.


Asunto(s)
Envejecimiento/metabolismo , Alcaloides/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Autofagia/fisiología , Disfunción Cognitiva/metabolismo , Dendrobium , Agregado de Proteínas/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Autofagia/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Agregado de Proteínas/efectos de los fármacos
20.
Brain Res ; 1741: 146871, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32380088

RESUMEN

The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3ß and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3ß and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.


Asunto(s)
Envejecimiento/efectos de los fármacos , Alcaloides/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Dendrobium , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metformina/administración & dosificación , Envejecimiento/genética , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Disfunción Cognitiva/genética , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/fisiología , Masculino , Ratones , Ratones Transgénicos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA