Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762175

RESUMEN

Enzymes are potent catalysts that increase biochemical reaction rates by several orders of magnitude. Flavoproteins are a class of enzymes whose classification relies on their ability to react with molecular oxygen (O2) during catalysis using ionizable active site residues. Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) is a flavoprotein that oxidizes D-arginine for P. aeruginosa survival and biofilm formation. The crystal structure of PaDADH reveals the interaction of the glutamate 246 (E246) side chain with the substrate and at least three other active site residues, establishing a hydrogen bond network in the active site. Additionally, E246 likely ionizes to facilitate substrate binding during PaDADH catalysis. This study aimed to investigate how replacing the E246 residue with leucine affects PaDADH catalysis and its ability to react with O2 using steady-state kinetics coupled with pH profile studies. The data reveal a gain of O2 reactivity in the E246L variant, resulting in a reduced flavin semiquinone species and superoxide (O2•-) during substrate oxidation. The O2•- reacts with active site protons, resulting in an observed nonstoichiometric slope of 1.5 in the enzyme's log (kcat/Km) pH profile with D-arginine. Adding superoxide dismutase results in an observed correction of the slope to 1.0. This study demonstrates how O2•- can alter the slopes of limbs in the pH profiles of flavin-dependent enzymes and serves as a model for correcting nonstoichiometric slopes in elucidating reaction mechanisms of flavoproteins.


Asunto(s)
Aminoácido Oxidorreductasas , Dominio Catalítico , Oxígeno , Pseudomonas aeruginosa , Superóxidos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Oxígeno/metabolismo , Oxígeno/química , Superóxidos/metabolismo , Superóxidos/química , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Aminoácido Oxidorreductasas/genética , Protones , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cinética , Oxidación-Reducción , Mutación , Sustitución de Aminoácidos , Arginina/química , Arginina/metabolismo
2.
Front Plant Sci ; 15: 1328006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751833

RESUMEN

Introduction: Humic substances (HS) are increasingly being applied as crop plant biostimulants because they have been shown to increase plant productivity, especially under environmentally stressful conditions. There has been intense interest in elucidating the HS molecular structures responsible for eliciting the plant biostimulant response (PBR). The polar and weakly acidic carboxylic (COOH) and phenolic hydroxyl (ArOH) functional groups play major roles in the acid nature, pH dependent solubilities, conformation, and metal- and salt-binding capabilities of HS. Reports on the role played by these groups in the PBR of HS found growth parameters being both positively and negatively correlated with COOH and ArOH functionalities. Materials and methods: To investigate the role of COOH and ArOH in HS biostimulant activity we used a humic acid (HA), purified from an oxidized sub bituminous coal to prepare HAs with COOH groups methylated (AHA), ArOH groups acetylated (OHA), and with both COOH and ArOH groups methylated (FHA). The original HA was designated (NHA). The four HAs were subjected to elemental, 13C-NMR, FTIR, and EPR analyses and their antioxidant properties were assessed using the trolox equivalents antioxidant capacity assay (TEAC). 13C-NMR and FTIR analysis revealed significant alkylation/acetylation. To determine the effects of alkylating/acetylating these functional groups on the HA elicited PBR, the HAs were evaluated in a plant bioassay on corn (Zea mays L.) seedling under nutrient and non-nutrient stressed conditions. Treatments consisted of the four HAs applied to the soil surface at a concentration of 80 mg C L-1, in 50 ml DI H2O with the control plants receiving 50ml DI H2O. Results: The HA-treated plants, at both fertilization rates, were almost always significantly larger than their respective control plants. However, the differences produced under nutrient stress were always much greater than those produced under nutrient sufficiency, supporting previous reports that HA can reduce the effects of stress on plant growth. In addition, for the most part, the HAs with the alkylated/acetylated groups produced plants equal to or larger than plants treated with NHA. Conclusion: These results suggests that COOH and ArOH groups play a limited or no role in the HA elicited PBR. Alternatively, the HA pro-oxidant to antioxidant ratio may play a role in the magnitude of the biostimulant response.

3.
Chembiochem ; : e202400139, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682718

RESUMEN

A binuclear Cu(II) cofactor was covalently bound to a lauric acid anchor. The resulting conjugate was characterized then combined with beta-lactoglobulin (ßLG) to generate a new biohybrid following the so-called "Trojan horse" strategy. This biohybrid was examined for its effectiveness in the oxidation of a catechol derivative to the corresponding quinone. The resulting biohybrid did not exhibit the sought after catecholase activity, likely due to its ability to bind and stabilize the semiquinone radical intermediate DTB-SQ. This semi-quinone radical was stabilized only in the presence of the protein and was characterized using optical and magnetic spectroscopic techniques, demonstrating stability for over 16 hours. Molecular docking studies revealed that this stabilization could occur owing to interactions of the semi-quinone with hydrophobic amino acid residues of ßLG.

4.
Small Methods ; 8(8): e2301405, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38168901

RESUMEN

Currently, the copolymer of dopamine (DA) and pyrrole (PY) via chemical and electrochemical oxidation usually requires additional oxidants, and lacks flexibility in regulating the size and morphology, thereby limiting the broad applications of DA-PY copolymer in biomedicine. Herein, the semiquinone radicals produced by the self-oxidation of DA is ingeniously utilized as the oxidant to initiate the following copolymerization with PY, and a series of quinone-rich polydopamine-pyrrole copolymers (PDAm-nPY) with significantly enhanced absorption in near-infrared (NIR) region without any additional oxidant assistance is obtained. Moreover, the morphology and size of PDAm-nPY can be regulated by changing the concentration of DA and PY, thereby optimizing nanoscale PDA0.05-0.15PY particles (≈ 150 nm) with excellent NIR absorption and surface modification activity are successfully synthesized. Such PDA0.05-0.15PY particles show effective photoacoustic (PA) imaging and photothermal therapy (PTT) against 4T1 tumors in vivo. Furthermore, other catechol derivatives can also copolymerize with PY under the same conditions. This work by fully utilizing the semiquinone radical active intermediates produced through the self-oxidation of DA reduces the dependence on external oxidants in the synthesis of composite materials and predigests the preparation procedure, which provides a novel, simple, and green strategy for the synthesis of other newly catechol-based functional copolymers.


Asunto(s)
Indoles , Oxidación-Reducción , Polímeros , Pirroles , Indoles/química , Polímeros/química , Pirroles/química , Animales , Ratones , Polimerizacion , Técnicas Fotoacústicas , Línea Celular Tumoral , Terapia Fototérmica , Nanopartículas/química , Femenino , Ratones Endogámicos BALB C
5.
Small Methods ; : e2301783, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195803

RESUMEN

Semiquinone (SQ) radicals play a critical role in the long-lasting UV-blocking application of lignin, while their origin and stable structure are unclear. Here, the organosolv lignin extracted from poplar (OL-P) is self-assembled into normal micelles (LNM) with more phenolic hydroxyl groups on the surface, and reverse micelles (LRM) with more methoxyl groups on the surface. After 12 h UV irradiation, the SQ radical contents in LNM and LRM increase 33% and 78% respectively. The performance of LNM based sunscreen keeps upswinging due to radical stabilization of phenolic hydroxyl groups. LRM based sunscreen experiences a gradual decrease after reaching maximum UV absorbance due to the quick generation and over oxidation of SQ radicals. Density functional theory (DFT) simulations reveal that methoxyl groups in OL-P has bigger bond length and smaller bond dissociation enthalpy than phenolic hydroxyl groups, and are easy to form SQ radicals. The Gibbs free energy (ΔG) needed for SQ-quinone transformation is above 26.10 kcal mol.-1 , while that for SQ-hydroquinone transformation is below -66.78 kcal mol.-1 . Hydroquinone is the stable structure of SQ radicals. This work discloses the origin and stable structure of SQ radicals in lignin under UV irradiation, and provides an important guidance for its long-lasting UV-blocking application.

6.
Environ Sci Technol ; 58(4): 2123-2132, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38237556

RESUMEN

Advanced oxidation processes (AOPs) often employ strong oxidizing inorganic radicals (e.g., hydroxyl and sulfate radicals) to oxidize contaminants in water treatment. However, the water matrix could scavenge the strong oxidizing radicals, significantly deteriorating the treatment efficiency. Here, we report a periodate/catechol process in which reactive quinone species (RQS) including the o-semiquinone radical (o-SQ•-) and o-benzoquinone (o-Q) were dominant to effectively degrade anilines within 60 s. The second-order reaction rate constants of o-SQ•- and o-Q with aniline were determined to be 1.0 × 108 and 4.0 × 103 M-1 s-1, respectively, at pH 7.0, which accounted for 21% and 79% of the degradation of aniline with a periodate-to-catechol molar ratio of 1:1. The major byproducts were generated via addition or polymerization. The RQS-based process exhibited excellent anti-interference performance in the degradation of aniline-containing contaminants in real water samples in the presence of diverse inorganic ions and organics. Subsequently, we extended the RQS-based process by employing tea extract and dissolved organic matter as catechol replacements as well as metal ions [e.g., Fe(III) or Cu(II)] as periodate replacements, which also exhibited good performance in aniline degradation. This study provides a novel strategy to develop RQS-based AOPs for the highly selective degradation of aniline-containing emerging contaminants.


Asunto(s)
Compuestos Férricos , Ácido Peryódico , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Benzoquinonas , Compuestos de Anilina , Catecoles , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 57(38): 14218-14225, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668505

RESUMEN

Quinones and products of their redox reactions (hydroquinones and semiquinones) have been suggested as important players in the reductive dehalogenation of organohalogens mediated by natural and pyrogenic organic matter, although based on limited direct evidence. This study focused on the reductive dehalogenation of a model organohalogen (triclosan) by 1,4-benzohydroquinone (H2Q). In the presence of H2Q only, degradation of triclosan does not occur within the experimental period (up to 288 h); however, it takes place in the presence of H2Q and FeCl3 under anoxic conditions at pH 5 and 7 (above the pKa of SQ = 4.1) only to be halted in the presence of dissolved oxygen. Kinetic simulation and thermodynamic calculations indicated that benzosemiquinone (SQ-) is responsible for the reductive degradation of triclosan, with the fitted rate constant for the reaction between SQ- and triclosan being 317 M-2 h-1. The critical role of semiquinones in reductive dehalogenation can be relevant to a wide range of quinones in natural and engineering systems based on the reported oxidation-reduction potentials of quinones/semiquinones and semiquinones/hydroquinones and supported by experiments with additional model hydroquinones.


Asunto(s)
Hidroquinonas , Triclosán , Simulación por Computador , Cetonas , Quinonas
8.
Environ Sci Technol ; 57(36): 13625-13634, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650769

RESUMEN

In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.


Asunto(s)
Sustancias Húmicas , Sulfametoxazol , Manganeso , Óxidos , Compuestos de Manganeso
9.
Chemosphere ; 335: 139155, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290511

RESUMEN

The Fenton and Fenton-like reactions are based on the decomposition of hydrogen peroxide catalyzed by Fe(II), primarily producing highly oxidizing hydroxyl radicals (HO∙). While HO∙ is the main oxidizing species in these reactions, Fe(IV) (FeO2+) generation has been reported as one of the primary oxidants. FeO2+ has a longer lifetime than HO∙ and can remove two electrons from a substrate, making it a critical oxidant that may be more efficient than HO∙. It is widely accepted that the preferential generation of HO∙ or FeO2+ in the Fenton reaction depends on factors such as pH and Fe: H2O2 ratio. Reaction mechanisms have been proposed to generate FeO2+, which mainly depend on the radicals generated in the coordination sphere and the HO∙ radicals that diffuse out of the coordination sphere and react with Fe(III). As a result, some mechanisms are dependent on prior HO∙ radical production. Catechol-type ligands can induce and amplify the Fenton reaction by increasing the generation of oxidizing species. Previous studies have focused on the generation of HO∙ radicals in these systems, whereas this study investigates the generation of FeO2+ (using xylidine as a selective substrate). The findings revealed that FeO2+ production is increased compared to the classical Fenton reaction and that FeO2+ generation is mainly due to the reactivity of Fe(III) with HO∙ from outside the coordination sphere. It is proposed that the inhibition of FeO2+ generation via HO∙ generated from inside the coordination sphere is caused by the preferential reaction of HO∙ with semiquinone in the coordination sphere, favoring the formation of quinone and Fe(III) and inhibiting the generation of FeO2+ through this pathway.


Asunto(s)
Catecoles , Peróxido de Hidrógeno , Hierro , Catecoles/química , Peróxido de Hidrógeno/química , Hierro/química , Oxidantes/química , Oxidación-Reducción
10.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835412

RESUMEN

The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.


Asunto(s)
Cobre , Magnetismo , Ligandos , Cobre/química , Iones
11.
J Biomater Appl ; 37(7): 1195-1204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633217

RESUMEN

Dopamine has been widely used for surface modification of cardiovascular medical devices as it forms films on most substrates that provide functional groups for surface chemical modification. However, under oxidative stress, the phenolic hydroxyl group on dopamine can undergo reversible transformation into phenol-semiquinone-quinone, which can cause cytotoxicity and immunotoxicity. In this study, we measured the effects of semiquinone on the behavior of vascular wall cells and inflammatory cells under oxidative stress via ultraviolet irradiation with a hydrogen peroxide diluent. Na2S2O3 was used as a stabilizer to obtain a semiquinone-rich poly-dopamine film, then phenol-semiquinone-quinone ratio on its surface was evaluated at three irradiation-oxidation time points. We found that the poly-dopamine film with ultraviolet irradiation in hydrogen peroxide solution for 15 min had the highest semiquinone occupancy of 19.18%. In the experimental group irradiated for 15 min, endothelial cells were cultured statically for 3 days and the number of surface adherent endothelial cells in the group with added semiquinone stabilizer was reduced to 73% of that in the group without stabilizer, indicating that semiquinone rich surface inhibits adhesion and proliferation of endothelial cells; Smooth muscle cells were cultured statically for 3 days, and the number of adherent smooth muscle on surfaces without stabilizer was reduced to 75% of that on surfaces with stabilizer added, indicating that semiquinone rich surfaces promote smooth muscle proliferation. These results demonstrate that semiquinone can adversely affect the repair effect after implantation of cardiovascular materials. Therefore, our study provides a reference for the application and optimization of dopamine in cardiovascular implant materials.


Asunto(s)
Dopamina , Células Endoteliales , Dopamina/farmacología , Peróxido de Hidrógeno , Oxidación-Reducción , Quinonas
12.
Photosynth Res ; 156(1): 101-112, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36307598

RESUMEN

Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Protones , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Concentración de Iones de Hidrógeno , Transporte de Electrón , Fotosíntesis , Rhodobacter sphaeroides/metabolismo
13.
Biochim Biophys Acta Bioenerg ; 1864(2): 148951, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509126

RESUMEN

Respiratory complex I in mitochondria and bacteria catalyzes the transfer of electrons from NADH to quinone (Q). The free energy available from the reaction is used to pump protons and to establish a membrane proton electrochemical gradient, which drives ATP synthesis. Even though several high-resolution structures of complex I have been resolved, how Q reduction is linked with proton pumping, remains unknown. Here, microsecond long molecular dynamics (MD) simulations were performed on Yarrowia lipolytica complex I structures where Q molecules have been resolved in the ~30 Å long Q tunnel. MD simulations of several different redox/protonation states of Q reveal the coupling between the Q dynamics and the restructuring of conserved loops and ion pairs. Oxidized quinone stabilizes towards the N2 FeS cluster, a binding mode not previously described in Yarrowia lipolytica complex I structures. On the other hand, reduced (and protonated) species tend to diffuse towards the Q binding sites closer to the tunnel entrance. Mechanistic and physiological relevance of these results are discussed.


Asunto(s)
Complejo I de Transporte de Electrón , Protones , Complejo I de Transporte de Electrón/metabolismo , Quinonas , Benzoquinonas/metabolismo
14.
Fundam Res ; 3(5): 777-785, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38933300

RESUMEN

Microplastics have attracted global concern. The environmental-weathering processes control their fate, transport, transformation, and toxicity to wildlife and human health, but their impacts on biogeochemical redox processes remain largely unknown. Herein, multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics. The spectroscopic results indicated that weathering of phenol-formaldehyde resins (PFs) by hydrogen peroxide (H2O2) led to a slight decrease in the content of phenol functional groups, accompanied by an increase in semiquinone radicals, quinone, and carboxylic groups. Electrochemical and wet-chemistry quantifications, coupled with microbial-chemical characterizations, demonstrated that the PFs exhibited appreciable electron-donating capacity (0.264-1.15 mmol e- g-1) and electron-accepting capacity (0.120-0.300 mmol e- g-1). Specifically, the phenol groups and semiquinone radicals were responsible for the electron-donating capacity, whereas the quinone groups dominated the electron-accepting capacity. The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and -accepting reactions. More importantly, the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation. In addition to the H2O2-weathered PFs, the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity. This study reports important redox properties of microplastics and their effect in mediating contaminant transformation. These findings will help to better understand the fate, transformation, and biogeochemical roles of microplastics on element cycling and contaminant fate.

15.
J Biol Chem ; 298(8): 102182, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752362

RESUMEN

The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.


Asunto(s)
Quinona Reductasas , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Sitios de Unión , Oxidación-Reducción , Quinona Reductasas/química , Riboflavina/genética , Sodio/metabolismo , Vibrio cholerae/metabolismo
16.
Front Plant Sci ; 12: 758424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925408

RESUMEN

For legal reasons, the publisher has withdrawn this article from public view. For additional information, please contact the publisher.

17.
Free Radic Biol Med ; 177: 260-269, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673144

RESUMEN

We have shown previously that exposing bacteria to tetrachlorocatechol (TCC) and sodium azide (NaN3) together causes synergistic cytotoxicity in a biphasic mode. However, the underlying chemical mechanism remains unclear. In this study, an unexpected ring-contraction 3(2H)-furanone and two quinoid-compounds were identified as the major and minor reaction products, respectively; and two unusual azido-substituted chloro-O-semiquinone radicals were detected and characterized as the major radical intermediates by complementary applications of direct ESR, HPLC/ESI-Q-TOF and high-resolution MS studies with nitrogen-15 isotope-labeled NaN3. Taken together, we proposed a novel molecular mechanism for the reaction of TCC/NaN3: N3- may attack on tetrachloro-O-semiquinone radical, forming two transient 4-azido-3,5,6-trichloro- and 4,5-diazido-3,6-dichloro-O-semiquinone radicals, consecutively. The second-radical intermediate may either undergo an unusual zwitt-azido cleavage to form the less-toxic ring-contraction 3(2H)-furanone product, or further oxidize to form the more toxic quinoid-product 4-amino-5-azido-3,6-dichloro-O-benzoquinone. A good correlation was observed between the biphasic formation of this toxic quinone due to the two competing decomposition pathways of the radical intermediate and the biphasic synergism between TCC and NaN3, which are dependent on their molar-ratios. This is the first report of detection and identification of two unique azido-substituted chloro-O-semiquinone radicals, and an unprecedented ring-contraction mechanism via an unusually mild and facile zwitt-azido rearrangement.


Asunto(s)
Carcinógenos , Quinonas , Benzoquinonas , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Azida Sódica/toxicidad
18.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638963

RESUMEN

Cytochrome P450 reductase (CYPOR) provides electrons to all human microsomal cytochrome P450s (cyt P450s). The length and sequence of the "140s" FMN binding loop of CYPOR has been shown to be a key determinant of its redox potential and activity with cyt P450s. Shortening the "140s loop" by deleting glycine-141(ΔGly141) and by engineering a second mutant that mimics flavo-cytochrome P450 BM3 (ΔGly141/Glu142Asn) resulted in mutants that formed an unstable anionic semiquinone. In an attempt to understand the molecular basis of the inability of these mutants to support activity with cyt P450, we expressed, purified, and determined their ability to reduce ferric P450. Our results showed that the ΔGly141 mutant with a very mobile loop only reduced ~7% of cyt P450 with a rate similar to that of the wild type. On the other hand, the more stable loop in the ΔGly141/Glu142Asn mutant allowed for ~55% of the cyt P450 to be reduced ~60% faster than the wild type. Our results reveal that the poor activity of the ΔGly141 mutant is primarily accounted for by its markedly diminished ability to reduce ferric cyt P450. In contrast, the poor activity of the ΔGly141/Glu142Asn mutant is presumably a consequence of the altered structure and mobility of the "140s loop".


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Transporte de Electrón/genética , Electrones , Mononucleótido de Flavina/metabolismo , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Secuencia de Aminoácidos , Animales , Familia 2 del Citocromo P450/metabolismo , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/metabolismo , Glicina/genética , Cinética , Microsomas/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Conejos
19.
Heliyon ; 7(8): e07746, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34458604

RESUMEN

Cytotoxicity by anthracycline antibiotics is attributed to several pathways. Important among them are formation of free-radical intermediates. However, their generation makes anthracyclines cardiotoxic which is a concern on their use as anticancer agents. Hence, any change in redox behavior that address cardiotoxicity is welcome. Modulation of redox behavior raises the fear that cytotoxicity could be compromised. Regarding the generation of free radical intermediates on anthracyclines, a lot depends on the surrounding environment (oxic or anoxic), polarity and pH of the medium. In case of anthracyclines, one-electron reduction to semiquinone or two-electron reduction to quinone-dianion are crucial both for cytotoxicity and for cardiotoxic side effects. The disproportion-comproportionation equilibria at play between quinone-dianion, free quinone and semiquinone control biological activity. Whatever is the form of reduction, semiquinones are generated as a consequence of the presence of anthracyclines and these interact with a biological target. Alizarin, a simpler anthracycline analogue and its MnII complex were subjected to electrochemical reduction to realize what happens when anthracyclines are reduced by compounds present in cells as members of the electron transport chain. Glassy carbon electrode maintained at the pre-determined reduction potential of a compound was used for reduction of the compounds. Nucleobases and calf thymus DNA that were maintained in immediate vicinity of such radical generation were used as biological targets. Changes due to the generated species under aerated/de-aerated conditions on nucleobases and on DNA helps one to realize the process by which alizarin and its MnII complex might affect DNA. The study reveals alizarin was more effective on nucleobases than the complex in the free radical pathway. Difference in damage caused by alizarin and the MnII complex on DNA is comparatively less than that observed on nucleobases; the complex makes up for any inefficacy in the free radical pathway by its other attributes.

20.
Chem Biol Interact ; 345: 109574, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34228969

RESUMEN

NAD(P)H: Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.


Asunto(s)
Antioxidantes/metabolismo , Contaminantes Ambientales/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Preparaciones Farmacéuticas/metabolismo , Quinona Reductasas/metabolismo , Transporte de Electrón , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA