Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 663: 262-269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401446

RESUMEN

The unprecedented demand for highly selective, real-time monitoring and low-power gas sensors used in food quality control has been driven by the increasing popularity of the Internet of Things (IoT). Herein, the self-standing perylene diimide based covalent organic framework membranes (COFMPDI-THSTZ) were prepared via liquid-liquid interfacial synthesis method. By incorporating the perylene diimide monomer into the COFM through molecular engineering, COFMPDI-THSTZ based sensor demonstrated an outstanding trimethylamine (TMA)-sensing performance at room temperature. Benefited from the TMA-accessible self-standing membrane morphology, π-electron delocalization effect, and extensive surface area with continuous nanochannels, the specific and highly sensitive TMA measurement has been achieved within the range of 0.03-400 ppm, with an exceptional theoretical detection limit as low as 10 ppb. Moreover, the primary internal mechanism of COFMPDI-THSTZ for this efficient TMA detection was investigated through in-situ FT-IR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers on sensing material surface, resulting in alterations in sensor resistance upon exposure to the target gas. For practical usage, COFMPDI-THSTZ based sensor exhibited exceptional real-time in-situ sensing capabilities, further confirmed their potential for application in dynamic prediction evaluation of marine fish products and quality monitoring in IoT.

2.
Angew Chem Int Ed Engl ; 62(50): e202313571, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885408

RESUMEN

Covalent organic frameworks (COFs) display great potential to be assembled into proton conductive membranes for their uniform and controllable pore structure, yet constructing self-standing COF membrane with high crystallinity to fully exploit their ordered crystalline channels for efficient ionic conduction remains a great challenge. Here, a macromolecular-mediated crystallization strategy is designed to manipulate the crystallization of self-standing COF membrane, where the -SO3 H groups in introduced sulfonated macromolecule chains function as the sites to interact with the precursors of COF and thus offer long-range ordered template for membrane crystallization. The optimized self-standing COF membrane composed of highly-ordered nanopores exhibits high proton conductivity (75 mS cm-1 at 100 % relative humidity and 20 °C) and excellent flow battery performance, outperforming Nafion 212 and reported membranes. Meanwhile, the long-term run of membrane is achieved with the help of the anchoring effect of flexible macromolecule chains. Our work provides inspiration to design self-standing COF membranes with ordered channels for permselective application.

3.
Adv Mater ; 35(26): e2300975, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36972194

RESUMEN

Highly flexible and robust self-standing covalent organic framework (COF) membranes with rapid preparation are important but technically challenging for achieving precise separation. Herein , a novel imine-based 2D soft covalent organic framework (SCOF) membrane with a large area of 226.9 cm2 , via ingeniously selecting an aldehyde flexible linker and a trigonal building block, is reported. The soft 2D covalent organic framework membrane is rapidly formed (≈5 min) based on the sodium dodecyl sulfate (SDS) molecular channel constructed at the water/dichloromethane (DCM) interface, which is the record-fast SCOF membrane formation and 72 times faster than that in the reported literature. MD simulation and DFT calculation elucidate that the dynamic, self-assembled SDS molecular channel facilitates faster and more homogeneous transfer of amine monomers in the bulk, thereby forming a soft 2D self-standing COF membrane with more uniform pores. The formed SCOF membrane exhibits superb sieving capability for small molecules, robustness in strong alkaline (5 mol L-1 NaOH), acid (0.1 mol L-1 HCl), and various organic solutions, and sufficient flexibility with a large curvature of 2000 m-1 for membrane-based separation science and technology.

4.
J Colloid Interface Sci ; 629(Pt B): 428-437, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36166969

RESUMEN

Covalent organic framework (COF) membranes have shown enormous potential for molecular separation due to their large surface areas and pre-designable structures. However, the mild and convenient preparation of COF membranes with high crystallinity has remained a significant challenge. In this work, we reported on a facile liquid-liquid interfacial polymerization method to fabricate self-standing imine-based COF membranes with excellent crystallinity and a tunable thickness at room temperature. Polymerization was confined at the immiscible organic solvent-water interface when the monomers in the dichloromethane met the catalyst aqueous solution. This unique design concept exploited the rapid formation of COF monolayers at the liquid-liquid interface to control catalyst diffusion and structural rearrangement, achieving high crystallinity of the COF membrane. Moreover, the thickness of the self-standing COF membranes could be regulated from 50 nm to 1 µm through the flexible regulation of the growth process. Benefiting from the large surface area of the COF membranes (378 m2/g) and the intensive π-π conjugate effect between the COFs and organic dyes, the obtained COF membranes exhibited high adsorption capacities toward Chrome Black T and Rose Bengal. This work may open a viable avenue to easily and mildly prepare COF membranes for water treatment.

5.
Chemistry ; 26(58): 13137-13141, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32652762

RESUMEN

Amorphous metal-organic frameworks (am MOFs) with a partially collapsed structure are a new category of porous hybrid materials. Here, solid-state amorphization of ZIF-8 was achieved by mechanical compression at 0.75 GPa. The compression-induced amorphous ZIF-8 (am ZIF-8) had a collapsed structure, but retained partial porosity. Benefiting from the deformed channel, the resultant am ZIF-8 exhibited preferable adsorption of C3 H6 , resulting in higher thermodynamic adsorption selectivity of C3 H6 /C3 H8 (6.72) than the crystalline counterparts (1.06). Further, am ZIF-8 achieved complete separation of an equimolar C3 H6 /C3 H8 mixture with the first breakthrough of C3 H8 . am ZIF-8 also displayed an enhancement in CO2 /N2 and CO2 /CH4 adsorption selectivities. More importantly, a self-standing am ZIF-8 membrane with boundary-free microstructure was constructed for the first time, and exhibited separation potential for H2 /CH4 , CO2 /N2 , CO2 /CH4 , and C3 H6 /C3 H8 with ideal selectivities of 14.79, 12.83, 16.23, and 2.67, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA