Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000642

RESUMEN

Wood-plastic composites are becoming increasingly recognized for their sustainability and their potential for use in various production processes. Nevertheless, enhancing their mechanical strength continues to be a difficult challenge. The objective of this research was to improve the mechanical strength of wood-plastic composite components manufactured through selective laser sintering (SLS). This was achieved by integrating a sustainable composite material, Prosopis chilensis (PCP), with polyethersulfone (PES) to form a composite referred to as PCPC. This study showcased the effect of various PCP particle sizes on mechanical strengths, dimensional accuracies (DAs), and surface roughness of PCPC parts manufactured using AFS-360 SLS. Single-layer sintering was employed to assess PCPC powder's formability with varying PCP particle sizes, and various tests were conducted to understand the materials' thermal properties and analyze particle dispersion and microstructure. The results demonstrated that PCP particle sizes ≤ 0.125 mm significantly enhanced the mechanical strength, forming quality, and DA compared to other particle sizes and pure PES. Key findings for PCPC parts with PCP ≤ 0.125 mm included a bending strength of 10.78 MPa, a tensile strength of 4.94 MPa, an impact strength of 0.91 kJ/m2, and a density of 1.003 g/cm3. Post-processing further improved these parameters, confirming that optimizing PCP particle size is crucial for enhancing the mechanical properties and overall quality of PCPC parts produced via SLS.

2.
Polymers (Basel) ; 14(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35406226

RESUMEN

This review summarizes the most recent advances from technological and physico-chemical perspectives to improve several remaining issues in polymeric materials' additive manufacturing (AM). Without a doubt, AM is experimenting with significant progress due to technological innovations that are currently advancing. In this context, the state-of-the-art considers both research areas as working separately and contributing to developing the different AM technologies. First, AM techniques' advantages and current limitations are analyzed and discussed. A detailed overview of the efforts made to improve the two most extensively employed techniques, i.e., material extrusion and VAT-photopolymerization, is presented. Aspects such as the part size, the possibility of producing parts in a continuous process, the improvement of the fabrication time, the reduction of the use of supports, and the fabrication of components using more than one material are analyzed. The last part of this review complements these technological advances with a general overview of the innovations made from a material perspective. The use of reinforced polymers, the preparation of adapted high-temperature materials, or even the fabrication of metallic and ceramic parts using polymers as supports are considered. Finally, the use of smart materials that enable the fabrication of shape-changing 3D objects and sustainable materials will also be explored.

3.
J Oral Implantol ; 48(4): 263-268, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091668

RESUMEN

This study was designed to evaluate the accuracy of a novel computer-designed and selectively laser sintered surgical guide for flapless dental implant placement in the edentulous jaw. Fifty dental implants were placed in 11 patients with at least 1 totally edentulous jaw. Initially, cone-beam computed tomography (CBCT) was performed in each patient to define the virtual position of the dental implants based on the assessment of bone availability and the proposed dental prosthesis. After virtual planning, 3D surgical guides were printed using selective laser sintering. CBCT was repeated after the surgery, and the pre- and postoperative images were overlapped in computer-assisted design software to compare the planned and actual positions of the dental implants using a 1-sample t test. The mean ± angular standard deviation between the long axes of the planned and final dental implant positions was 4.58° ± 2.85°; the linear deviation in the coronal position was 0.87 ± 0.49 mm and in the apical region of the dental implants was 1.37 ± 0.69 mm. These differences were statistically significant (P < .001). The proposed modifications reduced the deviations, resulting in an improvement in the technique. We were able to place implants and temporary prostheses using the present protocol, taking into account the differences between the planned and final positions of the dental implants.


Asunto(s)
Implantes Dentales , Arcada Edéntula , Cirugía Asistida por Computador , Diseño Asistido por Computadora , Computadores , Tomografía Computarizada de Haz Cónico/métodos , Implantación Dental Endoósea/métodos , Humanos , Imagenología Tridimensional/métodos , Arcada Edéntula/diagnóstico por imagen , Arcada Edéntula/cirugía , Rayos Láser , Planificación de Atención al Paciente , Cirugía Asistida por Computador/métodos
4.
Materials (Basel) ; 13(13)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645924

RESUMEN

The range of selective laser sintering (SLS) materials is currently limited, and the available materials are often of high cost. Moreover, the mechanical strength of wood-plastic SLS parts is low, which restricts the application of a SLS technology. A new composite material has been proposed to address these issues, while simultaneously valorizing agricultural and forestry waste. This composite presents several advantages, including reduced pollution associated with waste disposal and reduced CO2 emission with the SLS process in addition to good mechanical strength. In this article, a novel and low-cost Prosopis chilensis/polyethersulfone composite (PCPC) was used as a primary material for SLS. The formability of PCPC with various raw material ratios was investigated via single-layer experiments, while the mechanical properties and dimensional accuracy of the parts produced using the various PCPC ratios were evaluated. Further, the microstructure and particle distribution in the PCPC pieces were examined using scanning electron microscopy. The result showed that the SLS part produced via 10/90 (wt/wt) PCPC exhibited the best mechanical strength and forming quality compared to other ratios and pure polyethersulfone (PES), where bending and tensile strengths of 10.78 and 4.94 MPa were measured. To improve the mechanical strength, post-processing infiltration was used and the PCPC-waxed parts were enhanced to 12.38 MPa and 5.73 MPa for bending and tensile strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA