Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21235, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261635

RESUMEN

Predictive models for spatial correlation play an effective role in the assessment of seismic risk associated with distributed infrastructure and building portfolios. However, existing models often rely on simplified approaches, assuming isotropy and stationarity. This paper verifies these assumptions by presenting a comprehensive study using a database of 3D physics-based simulated broadband ground motions for Istanbul, generated by the SPEED software. The results reveal significant event-to-event variability and nonstationary and anisotropic characteristics of spatial correlation influenced by source, path, and site effects. The development of nonstationary correlation models requires exploring influential metrics beyond spatial proximity and gaining a deep understanding of their impact, which is the focus of this study. Analysis of the spatial correlations of peak ground displacement, peak ground velocity, peak ground acceleration, and response spectral accelerations at different periods, employing both stationary and nonstationary correlation modelling methods and considering the finite fault model, indicates that the slip distribution pattern, direction and distance of station pairs relative to earthquake rupture, soil softness, and homogeneity of soil properties significantly influence the spatial correlations of near-field earthquake ground motions. Implementation of the introduced parameters in predictive spatial correlation models enhances the precision of regional seismic hazard assessments.

2.
Philos Trans A Math Phys Eng Sci ; 382(2276): 20230184, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38945164

RESUMEN

There is an ongoing discussion about how to forecast the maximum magnitudes of induced earthquakes based on operational parameters, subsurface conditions and physical process understanding. Although the occurrence of damage caused by induced earthquakes is rare, some cases have caused significant economic loss, injuries and even loss of life. We analysed a global compilation of earthquakes induced by hydraulic fracturing, geothermal reservoir stimulation, water disposal, gas storage and reservoir impoundment. Our analysis showed that maximum magnitudes scale with the characteristic length of pressure diffusion in the brittle Earth's crust. We observed an increase in the nucleation potential of larger-magnitude earthquakes with time and explained it by diffusion-controlled growth of the pressure-perturbed part of faults. Numerical and analytical fault size modelling supported our findings. Finally, we derived magnitude scaling laws to manage induced seismic hazard of upcoming energy projects prior to operation. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

3.
Sci Rep ; 14(1): 14678, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918401

RESUMEN

Earthquake prevention and disaster mitigation are crucial aspects of social welfare that significantly impact national public security. This paper presents a seismic risk assessment and hazard prediction of the Hunhe Fault in the Shengyang-Fushun (Shen-Fu) New District. The target area is at risk of seismic damage due to two major branch ruptures, namely, F9 and F1; these ruptures have the potential to generate maximum earthquakes with a magnitude of 6.0 in the next 50 to 100 years. A three-dimensional underground velocity structure and asperity source model were established for the target faults. Subsequently, a hybrid technique combining deterministic and empirical approaches was employed to simulate the broadband strong ground motion of the target region in anticipation of the occurrence of expected scenario earthquakes. The distributions of peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD) for the area are provided, and the results indicate that densely populated urban areas could experience PGA values close to 280 cm/s2 along the fault traces. This study provides a reliable basis for engineering construction and urban planning in the Shen-Fu New District.

4.
Heliyon ; 10(9): e30716, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765121

RESUMEN

Stable continental regions pose unique challenges for conducting Probabilistic Seismic Hazard Analysis because the earthquake activity driving mechanisms are poorly understood. For instance, the lower seismicity (hence the paucity of data) and the absence of well-defined active fault systems complicate accurately determining seismic source parameters. Northeastern Brazil is a stable continental region exhibiting moderate-size events recorded with significant seismic intensities and provoking the collapse of poorly constructed buildings in the last century. Thus, assessing the seismic hazard is critical for seismic risk mitigation. The seismic hazard depends on three components: source, path, and site, and here, we present the probabilistic seismic hazard analysis of the source component for NE Brazil. Spatial aggregation of earthquake sources outlined four areal seismic zones. A goodness-of-fit test rejected the Gutenberg-Richter model of magnitude frequency distribution in one of the studied seismic zones. For this reason, we estimated the magnitude probability distribution function in that zone using a nonparametric adaptive kernel estimator. In other zones the Gutenberg-Richter magnitude frequency model was applied. In either way of the magnitude probability distribution modelling we considered the upper bound for magnitude equal to 6.6 mR, based on the upper bound of a 95 % confidence interval for the standard normal distribution of palaeoearthquake sizes. Our findings suggests that potentially damaging events are likely to occur, and we cannot neglect chances for the occurrence of earthquakes exceeding 5.2 mR. The calculated mean return periods indicate significantly shorter intervals between consecutive large events than palaeoseismic records.

5.
Sensors (Basel) ; 23(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37960686

RESUMEN

This manuscript describes the design, development, and implementation of a prototype system based on seismogeodetic techniques, consisting of a low-cost MEMS seismometer/accelerometer, a biaxial inclinometer, a multi-frequency GNSS receiver, and a meteorological sensor, installed at the Doñana Biological Station (Huelva, Spain) that transmits multiparameter data in real and/or deferred time to the control center at the University of Cadiz. The main objective of this system is to know, detect, and monitor the tectonic activity in the Gulf of Cadiz region and adjacent areas in which important seismic events occur produced by the interaction of the Eurasian and African plates, in addition to the ability to integrate into a regional early warning system (EWS) to minimize the consequences of dangerous geological phenomena.

6.
Entropy (Basel) ; 25(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37895505

RESUMEN

The assessment of seismic risk and the prevention of earthquake occurrences during reservoir operation present significant challenges in terms of accurate determination. This study aims to address this issue by developing a numerical model. The primary objective is to estimate the vulnerability of different fault types to reservoir impoundment. This model integrates essential parameters such as fault dip and the relative orientation between the reservoir and potential earthquakes, and it is structured within a risk framework using polar coordinates. Through comprehensive computations, we evaluate the alterations in elastic stress and fluid pore pressure resulting from water impoundment. This is achieved by employing a fully coupled two-dimensional poroelastic approach. Furthermore, our model incorporates relevant seismic data to enhance its accuracy. The findings of our study underscore that the critical factor lies in the fault's precise positioning with respect to the reservoir. The risk associated with a fault is contingent upon both its location and its orientation, emphasizing the importance of these factors in determining hazardous zones.

7.
MethodsX ; 11: 102386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37767156

RESUMEN

When dynamic soil-structure interaction (DSSI) analyses are performed, e.g. using the finite element (FE) method, the input signal is required at the base of the model. Nevertheless, acceleration records are usually available at the surface and, therefore, the desired motion must be deconvolved to the base. The latter is usually performed through the solution of one-dimensional propagation of shear waves in an elastic medium, in the frequency domain. Herein, nonlinear behavior is generally incorporated through the equivalent-linear method, by iteratively reducing the stiffness and increasing the critical damping ratio as a function of the maximum strains attained in each iteration. However, if complex material models are adopted to characterize the soil, the input motion derived with the equivalent linear method will not be compatible due to the simplified approach used to represent the nonlinear behavior. In this article, the use of a procedure to perform a time-domain deconvolution in non-linear elastoplastic materials is demonstrated. The goal is to generate input accelerograms at the base of a FE model to perform DSSI analyses. The procedure is based on the iterative modification of the motion at the base according to the relative differences between the propagated and target surface spectra. To illustrate the use of the methodology, it was applied to a FE model of the Treasure Island site (San Francisco, US), to derive the required motion at the base from a record of the Loma Prieta earthquake.•This article provides a useful guideline to optimize the use of the deconvolution procedure to derive input motions for dynamic FE analyses considering nonlinear elastoplastic materials.

8.
Front Public Health ; 11: 1240573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719723

RESUMEN

Introduction: Traditional villages are precious historical and cultural heritage sites. The selection of post-earthquake recovery and reconstruction (PERR) mode directly affects the village cultural heritage protection and the development direction of post-disaster reconstruction. A scientific and comprehensive feasibility evaluation for selecting the PERR mode of traditional villages can provide sufficient evidence for the recovery efforts in earthquake-stricken villages. Method: The author summarizes three PERR modes and constructs an evaluation index system for the selection of PERR modes of traditional villages. Based on the interrelationship of the indicators, the author has preliminarily established the Dependency Analytic Process (DAP), Based on this method, a model of traditional village PERR mode selection is constructed, and an empirical analysis is carried out in the case of the earthquake-stricken area of Xieluo-buzi Village in 2022 M6.8 Luding earthquake, to discuss the selection of PERR modes of traditional villages. Results: The authors have explored the application of the DAP in the selection of PERR modes for traditional villages and verified the effectiveness of the method. Since a large amount of actual research work is required to conduct an assessment, it is believed that with the widespread applications of the DAP, its superiority and practicality will be further demonstrated. Conclusion: The protection of traditional villages is a dynamic protection process, in which the will of the indigenous people is respected, the social network of the indigenous people is maintained, and the fair rights of the indigenous people to participate in the implementation of the project and to enjoy the preferential policies and resource benefits are guaranteed, as they are the real main body of the heritage protection, so that the traditional village ethnic heritage can be inherited and developed permanently in the protection. DAP is applicable to the comprehensive evaluation of multiple factors, particularly in situations where the importance of the indicators is difficult to be distinguished from each other. This is a new method to determine the weight vector, which has a broad application prospect.


Asunto(s)
Desastres , Terremotos , Humanos , Políticas
9.
Artículo en Inglés | MEDLINE | ID: mdl-37623176

RESUMEN

Resilient stormwater infrastructure is one of the fundamental components of resilient and sustainable cities. For this, the resilience assessment of stormwater infrastructure against earthquake hazards is crucial for municipal authorities. The objective of this study is to develop a resilience assessment framework for stormwater pipe infrastructure against seismic hazards. A Bayesian belief network (BBN)-based stormwater infrastructure resilience model is constructed based on the published literature and expert knowledge. The developed framework is implemented in the city of Regina, Canada, to assess the city's stormwater pipe infrastructure resilience. The outcome of the model indicates that proposed BBN-based stormwater infrastructure resilience model can effectively quantify uncertainties and handle the nonlinear relationships between several reliability and recovery factors. The model is also capable of identifying the most sensitive and vulnerable stormwater pipes within the network.


Asunto(s)
Productos Biológicos , Teorema de Bayes , Reproducibilidad de los Resultados , Canadá , Ciudades
10.
Risk Anal ; 43(2): 372-390, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35381621

RESUMEN

Though significant research exists on earthquake hazard adjustment adoption more generally, research focused on how information seeking influences planned or actual preparedness behavior is rare, limiting our understanding of how information seeking translates into preparedness. To address this gap, our study tests a proposed model of household seismic hazard adjustment using questionnaire responses of roughly 400 households living in the Portland, OR metropolitan region. The proposed model includes components of the Protective Action Decision Model (PADM) with specific emphasis on past information seeking behavior, preparedness behavior, intentions to seek information, and intentions to take protective action. Other components include risk perception, earthquake experience, affective response, seismic risk zone residency, and demographics. Consistent with previous research, this study finds information seeking behavior to be the strongest influence on preparedness with other important influences being risk perception, affective response, and intentions to prepare. We find weak ties between risk zone residency and earthquake risk perception, though this may be because our sample has little experience with earthquakes and the majority live in the same earthquake risk zones. Importantly, longitudinal studies are needed to determine whether information seeking and intentions to prepare eventually result in household protective action.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36366769

RESUMEN

The 2020 National Building Code of Canada (NBCC) seismic hazard model (SHM) marks a comprehensive update over its predecessor (NBCC 2015). For different regions in Canada, this will have an impact on the design of new buildings and performance assessment of existing ones. In the present study, a recently developed hybrid building system with reinforced concrete (RC) moment-resisting frames and cross-laminated timber (CLT) infills is assessed for its seismic performance against the latest SHM. The six-story RC-CLT hybrid system, designed using the direct displacement-based method, is located in Vancouver, Canada. Along with very high seismicity, southwestern British Columbia is characterized by complex seismotectonics, consisting of subduction, shallow crustal, and in-slab faulting mechanisms. A hazard-consistent set of 40 ground motion pairs is selected from the PEER and KiK-net databases, and used to estimate the building's seismic performance. The effects of using steel slit dampers (associated with large hysteresis loops) and flag-shaped energy dissipators (associated with the recentering capability) are investigated. The results indicate that the hybrid system has good seismic performance with a probability of collapse of 2-3% at the 2475-year return period shaking intensity. The hybrid building with steel slit dampers exhibits a collapse margin ratio of 2.8, which increases to 3.5-3.6 when flag-shaped dissipators are used. The flag-shaped dissipators are found to significantly reduce the residual drift of the hybrid building. Additionally, the seismic performance of the hybrid building equipped with flag-shaped dissipators is found to improve marginally when the recentering ratio is increased.

12.
Pure Appl Geophys ; 179(10): 3605-3623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158598

RESUMEN

This paper evaluates the use of multisite (MS) probabilistic seismic hazard analysis (PSHA), which estimates the annual exceedance rate of a given level of ground motion in at least one of several sites as one of several possible results. For this purpose, (1) MS-PSHA is implemented through the Monte Carlo approach, taking into account various area sizes and correlation distances (CDs), and then (2) two proposals are represented as applications of MS-PSHA outcomes, both with reference to Sarpol-e Zahab City, a seismically active region located in the west of Iran. The first proposal attempts to determine the current code design probability of exceedance in at least one site, and the second one defines collapse prevention levels based on different probabilities of exceedance in at least one site. The efficiency of the results is discussed mainly by comparing them to recorded peak ground accelerations (PGAs) of three earthquakes, including the 2017 Sarpol-e Zahab 7.3 M w event that largely exceeded the code design spectrum. MS-PSHA results demonstrate reasonable performance both in determining design ground motions and evaluating current design code when the exact seismic parameters of the study area are used in the analysis. Moreover, developed code-type design spectra based on MS-PSHA provided safety against collapse compared to a recently occurring low-probability event. MS estimates for various CDs and probabilities of exceedance in at least one site can also provide flexible design strategies regarding the importance of a structure and expected damage on a regional scale.

13.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957260

RESUMEN

A strong motion monitoring network records data that provide an excellent way to study how source, path, and site effects influence the ground motion, specifically in the near-source area. Such data are essential for updating seismic hazard maps and consequently building codes and earthquake-resistant design. This paper aims to present the Italian Strong Motion Network (RAN), describing its current status, employment, and further developments. It has 648 stations and is the result of a fruitful co-operation between the Italian government, regions, and local authorities. In fact, the network can be divided into three sub-networks: the Friuli Venezia Giulia Accelerometric Network, the Irpinia Seismic Network, and all the other stations. The Antelope software automatically collects, processes, and archives data in the data acquisition centre in Rome (Italy). The efficiency of the network on a daily basis is today more than 97%. The automatic and fast procedures that run in Antelope for the real-time strong motion data analysis are continuously improved at the University of Trieste: a large set of strong motion parameters and correspondent Ground Motion Prediction Equations allow ground shaking intensity maps to be provided for moderate to strong earthquakes occurring within the Italian territory. These maps and strong motion parameters are included in automatic reports generated for civil protection purposes.


Asunto(s)
Terremotos , Italia , Movimiento (Física) , Programas Informáticos
14.
Philos Trans A Math Phys Eng Sci ; 380(2231): 20210393, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35858082

RESUMEN

A new approach to seismic analysis has been introduced and demonstrated for a sequence of recent seismic events recorded in the Blackpool region of Lancashire, UK. The seismic activity, induced by an industrial hydraulic fracturing at a depth exceeding 2 km, had the extent of registered surface elastic vibrations reaching a distance exceeding 15 km. The analysis is based on the study of elastic fields, three-dimensional extrapolations of the landscape and the novel reconstruction of a three-dimensional digital model of seismic map boundaries and vertical profiles. The verification of the proposed approach is carried out via the comparison with published data of the Blackpool seismic events, combined with the new spectral analysis linked to the identified regions of seismic activity. The latter was accompanied by a finite-element simulation of vibrations for an elastic layer of variable thickness, approximating the test region. The analysis and numerical modelling have demonstrated consistency with the dynamic nature of structural stratification of the geological systems, and in addition, the predictive nature of the modelling work was demonstrated by the comparison of the model eigenmodes with the published parameters of registered earthquakes in the Blackpool area. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.

15.
Bull Earthq Eng ; 20(6): 2825-3069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35474945

RESUMEN

The fundamental objective of earthquake engineering is to protect lives and livelihoods through the reduction of seismic risk. Directly or indirectly, this generally requires quantification of the risk, for which quantification of the seismic hazard is required as a basic input. Over the last several decades, the practice of seismic hazard analysis has evolved enormously, firstly with the introduction of a rational framework for handling the apparent randomness in earthquake processes, which also enabled risk assessments to consider both the severity and likelihood of earthquake effects. The next major evolutionary step was the identification of epistemic uncertainties related to incomplete knowledge, and the formulation of frameworks for both their quantification and their incorporation into hazard assessments. Despite these advances in the practice of seismic hazard analysis, it is not uncommon for the acceptance of seismic hazard estimates to be hindered by invalid comparisons, resistance to new information that challenges prevailing views, and attachment to previous estimates of the hazard. The challenge of achieving impartial acceptance of seismic hazard and risk estimates becomes even more acute in the case of earthquakes attributed to human activities. A more rational evaluation of seismic hazard and risk due to induced earthquakes may be facilitated by adopting, with appropriate adaptations, the advances in risk quantification and risk mitigation developed for natural seismicity. While such practices may provide an impartial starting point for decision making regarding risk mitigation measures, the most promising avenue to achieve broad societal acceptance of the risks associated with induced earthquakes is through effective regulation, which needs to be transparent, independent, and informed by risk considerations based on both sound seismological science and reliable earthquake engineering.

16.
Heliyon ; 7(12): e08520, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34934838

RESUMEN

The seismic hazard analyses for Yemen have attracted the attention of researchers during the last two decades. However, the studies are limited and mainly use deterministic or approximate conventional probabilistic approaches. The conclusions drawn from these studies do not fit with current seismic design codes (International Building Code). This article presented the method and findings of a probabilistic seismic hazard assessment for Yemen in accordance with current seismic design building regulations. All the data sources, available nationally and internationally, were utilized in compiling earthquake database by covering the recent records and the seismic activity maps of the study region. The study area was regionalized to 11 seismotectonic area sources on the basis of the seismicity maps and available tectonic maps. On the analytical side, the earthquake recurrence analysis was evaluated for each source, and logic tree concept was used to model the seismic sources that may have significant effect on seismic hazard evaluation of Yemen as a combination of area and line sources. A probabilistic forecasting model was formulated, appropriate ground motion attenuation relationships were used, and seismic hazard contour maps were developed for the entire Yemen area. The maps present dense contours of peak ground accelerations and short and long period spectral accelerations for different return periods. The highest predicted seismic hazard is found in Dhamar City. This study provides basic and essential requirements that will be valuable in developing advanced seismic design criteria for Yemen.

17.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207695

RESUMEN

The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular-electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018-2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions.

18.
Data Brief ; 37: 107202, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34179319

RESUMEN

The present dataset was collected to evaluate the environmental stressors on a lacustrine basin in the Eastern Alps of glacial origin that has been affected in recent years by natural and anthropogenic events such as the construction of a hydroelectric power plant and a series of strong earthquakes during 1976-1977. We collected sediment cores in different sites from the lake margins to the depocenter and performed a multiproxy analysis of sediment sample to highlight lake stratigraphy and major changes occurring at a decadal scale (Polonia et al., [1]). The integrated analyses of sedimentological, geochemical, isotopic, mineralogical and micropaleontological analyses aimed at reconstructing changes in sediment composition and define the triggering mechanisms of altered environmental conditions. The dataset demonstrates that evaluating ex post the effects of artificial modification in a natural environment during relatively long time spans (decades) can provide important insights for managing and protection strategies in similar environments worldwide.

19.
Sensors (Basel) ; 21(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067441

RESUMEN

The development and application of a low-cost instrumentation system for seismic hazard assessment in urban areas are described in the present study. The system comprises a number of autonomous triaxial accelerographs, designed and manufactured in house and together with dedicated software for device configuration, data collection and further postprocessing. The main objective is to produce a detailed view of strong motion variability in urban areas, for at least light intensity strong motion events. The overall cost of the developed devices is at least ten times lower than the respective commercial units, hence their deployment as an ultra-dense network over the area of interest can be significantly cost-effective. This approach is considered an efficient complement to traditional microzonation procedures, which are typically based on relatively few actual recordings and the application of theoretical methodologies to assess the strong motion distribution. The manufactured devices adopt micro-electro-mechanical (MEMS) digital sensor technology for recording acceleration, whereas the accompanying software suite provides various configuration options, quick browsing, analyzing and exporting of the recorded events, as well as GIS type functionality for seamlessly producing explicit seismic hazard maps of the considered area. The evaluation of system performance was based on shaking table and real field comparisons against high accuracy commercial accelerographs. The study concludes with a real application of the proposed system in the form of an ultra-dense network installed at the city of Lefkada, an earthquake prone urban area in Greece, and the following compilation of explicit shakemaps.

20.
Sensors (Basel) ; 21(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070182

RESUMEN

The largest possible earthquake magnitude based on geographical characteristics for a selected return period is required in earthquake engineering, disaster management, and insurance. Ground-based observations combined with statistical analyses may offer new insights into earthquake prediction. In this study, to investigate the seismic characteristics of different geographical regions in detail, clustering was used to provide earthquake zoning for Mainland China based on the geographical features of earthquake events. In combination with geospatial methods, statistical extreme value models and the right-truncated Gutenberg-Richter model were used to analyze the earthquake magnitudes of Mainland China under both clustering and non-clustering. The results demonstrate that the right-truncated peaks-over-threshold model is the relatively optimal statistical model compared with classical extreme value theory models, the estimated return level of which is very close to that of the geographical-based right-truncated Gutenberg-Richter model. Such statistical models can provide a quantitative analysis of the probability of future earthquake risks in China, and geographical information can be integrated to locate the earthquake risk accurately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA