Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.234
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 135273, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226980

RESUMEN

Light quality considerably influences plant secondary metabolism, yet the precise mechanism underlying its impact on Eleutherococcus senticosus remains elusive. Comprehensive metabolomic and transcriptomic analyses revealed that varying light quality alters the biosynthesis of triterpene saponins by modulating the expression of genes involved in the process in E. senticosus. Through correlation analysis of gene expression and saponin biosynthesis, we identified four light-responsive transcription factors, namely EsbZIP1, EsbZIP2, EsbZIP4, and EsbZIP5. EsbZIP transcription factors function in the nucleus, with light quality-dependent promoter activity. Except for EsbZIP2, the other EsbZIP transcription factors exhibit transcriptional self-activation. Furthermore, EsbZIP can bind to the promoter areas of genes that encode important enzymes (EsFPS, EsSS, and EsSE) involved in triterpene saponin biosynthesis, thereby regulating their expression. Overexpression of EsbZIP resultes in significant down-regulation of most downstream target genes,which leads to a decrease in saponin content. Overall, varying light quality enhances the content of triterpene saponins by suppressing the expression of EsbZIP. This study thus elucidates the molecular mechanism by which E. senticosus adjusts triterpene saponin levels in response to changes in light quality.

2.
J Environ Manage ; 369: 122370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236605

RESUMEN

Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.


Asunto(s)
Piretrinas , Plantones , Silicio , Solanum lycopersicum , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Piretrinas/toxicidad , Silicio/farmacología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Insecticidas/toxicidad
3.
Physiol Plant ; 176(5): e14501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39256953

RESUMEN

Cold stress seriously affects plant development and secondary metabolism. The basic region/leucine zipper (bZIP) is one of the largest transcription factor (TFs) family and widely involved in plant cold stress response. However, the function of bZIP in Dendrobium catenatum has not been well-documented. Cold inhibited the growth of D. catenatum and increased total polysaccharide and alkaloid contents in stems. Here, 62 DcbZIP genes were identified in D. catenatum, which were divided into 13 subfamilies. Among them, 58 DcbZIPs responded to cold stress, which were selected based on the transcriptome database produced from cold-treated D. catenatum seedlings. Specifically, the expression of DcbZIP3/6/28 was highly induced by cold treatment in leaves or stems. Gene sequence analysis indicated that DcbZIP3/6/28 contains the bZIP conserved domain and is localized to the cell nucleus. Co-expression networks showed that DcbZIP6 was significantly negatively correlated with PAL2 (palmitoyl-CoA), which is involved in flavonoid metabolism. Moreover, DcbZIP28 has significant negative correlations with various metabolism-related genes in the polysaccharide metabolic pathway, including PFKA1 (6-phosphofructokinase), ALDO2 (aldose-6-phosphate reductase) and SCRK5 (fructokinase). These results implied that DcbZIP6 or DcbZIP28 are mainly involved in flavonoid or polysaccharide metabolism. Overall, these findings provide new insights into the roles of the DcbZIP gene family in secondary metabolism in D. catenatum under cold stress.


Asunto(s)
Respuesta al Choque por Frío , Dendrobium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Metabolismo Secundario , Dendrobium/genética , Dendrobium/metabolismo , Dendrobium/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Metabolismo Secundario/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frío , Filogenia
4.
Plant Cell Environ ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282754

RESUMEN

Biosynthesis of specific secondary metabolites in plants involves fine regulation of gene expression. Camellia chekiangoleosa has important economic value: the seeds contain high-quality unsaturated fatty acids and the pericarp is rich in tea saponins. As an important posttranscriptional regulator, the role of microRNAs (miRNAs) in controlling secondary metabolism in C. chekiangoleosa is not fully studied. Here, we investigated the role of miRNAs and their targets in the secondary metabolic regulatory network by comprehensively analyzing small RNAs, transcriptomes, and degradomes from different tissues. We identified 168 known miRNAs and 74 novel miRNAs in the C. chekiangoleosa genome and revealed 15 tandem clusters containing 35 miRNAs. By establishing a gene regulatory network containing miRNAs, target genes, and transcription factors, we unravelled the multiplicity of miRNA tissue-specific regulation of gene expression, which may be tightly linked to the synthesis of secondary metabolites. Furthermore, we characterized a novel long-noncoding miRNA gene (cch-miR3633) that targeted a UDP-transferase gene (CchUGT94E5). We showed that, ectopic expression of CchUGT94E5 caused outgrowth of shoot branching and changes in cytokinin contents in Arabidopsis, indicating a potential role of regulating secondary metabolism. This work provides valuable information for the study of miRNA regulation of secondary metabolism.

5.
Braz J Microbiol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39222220

RESUMEN

Probiogenomics can provide important insights bout probiotic candidate bacteria. This study aimed to perform an in-depth genomic characterization of the probiotic candidate Lactiplantibacillus plantarum CNPC024 to investigate its probiosis mechanisms, identify metabolic pathways that might benefit the host, and improve the safety assessment for this strain to be effectively used as a probiotic. After whole-genome sequencing in Illumina MiSeq platform, the de novo genome assembly resulted in a 3.2 Mb draft genome. According to the Average Nucleotide Identity (ANI) analysis with 46 randomly validated probiotic LAB belonging to the Lactobacillaceae family, the strain showed a 99% nucleotide identity with other L. plantarum probiotic species. We identified a set of determinants conferring tolerance to bile salts and low pH conditions, as well as temperature, oxidative and osmotic stressors via the glutathione-glutaredoxin system (Grxs). As a ß­galactosidase­producing strain, it has the potential to be used in fermented dairy products for lactose-intolerant individuals. There were no significant hits for transferable antibiotic-resistance genes. We also identified gene clusters associated with production of bacteriocins (plantaricins E, F and K). Lastly, we detected metabolic pathways associated with the production of tryptophan-derived metabolites that could potentially modulate the host's immune responses.

6.
J Agric Food Chem ; 72(35): 19333-19341, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39183467

RESUMEN

The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.


Asunto(s)
Herbicidas , Ácidos Nicotínicos , Proteínas de Plantas , ATPasas de Translocación de Protón , Triticum , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/enzimología , Herbicidas/toxicidad , ATPasas de Translocación de Protón/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Nicotínicos/toxicidad , Ácidos Nicotínicos/farmacología , Ácidos Indolacéticos/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Oxilipinas/farmacología , Ciclopentanos/farmacología
7.
Plant Physiol Biochem ; 215: 108988, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094480

RESUMEN

Phytochrome-interacting factors (PIFs) are pivotal transcriptional regulators controlling photomorphogenesis, environmental responses, and development in plants. However, their specific roles in coordinating adaptation towards abiotic stress and metabolism remain underexplored in tea plants. Here, we identified seven PIF members from four distinct clades (PIF1, PIF3, PIF7, and PIF8). Promoter analysis implicated CsPIFs in integrating light, stress, hormone, and circadian signals. Most CsPIFs exhibited rapid increase in expression under shading, especially CsPIF7b/8a, which displayed significant changes in long-term shading condition. Under drought/salt stress, CsPIF3b emerged as a potential positive regulator. CsPIF3a was induced by low temperature and co-expressed with CsCBF1/3 and CsDREB2A cold response factors. Dual-luciferase assays confirmed that act as negative regulator of the CBF pathway. Expression profiling across 11 tea cultivars associated specific CsPIFs with chlorophyll biosynthesis and accumulation of anthocyanins, flavonols, and other metabolites. In summary, this study highlights the significance of CsPIFs as central coordinators in managing intricate transcriptional reactions to simultaneous abiotic stresses and metabolic adjustments in tea plants. This insight informs future strategies for enhancing this economically crucial crop through crop improvement initiatives.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Camellia sinensis/genética , Camellia sinensis/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/genética , Metabolismo Secundario/genética , Genoma de Planta
8.
Microbiol Res ; 287: 127868, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126862

RESUMEN

Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas , Percepción de Quorum , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Proteína de Factor 1 del Huésped/metabolismo , Proteína de Factor 1 del Huésped/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Floroglucinol/metabolismo , Floroglucinol/análogos & derivados , Acil-Butirolactonas/metabolismo , Fenoles/metabolismo , Pirrolnitrina/metabolismo , Pirroles/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Compuestos Heterocíclicos con 3 Anillos/metabolismo
9.
Genomics ; 116(5): 110925, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178998

RESUMEN

Fungal-plant interactions have persisted for 460 million years, and almost all terrestrial plants on Earth have endophytic fungi. However, the mechanism of symbiosis between endophytic fungi and host plants has been inconclusive. In this dissertation, we used a strain of endophytic Fusarium lateritium (Fl617), which was found in the previous stage to promote disease resistance in tomato, and selected the pathogenic Fusarium oxysporum Fo4287 and endophytic Fusarium oxysporum Fo47, which are in the same host and the closest relatives of Fl617, to carry out a comparative genomics analysis of the three systems and to provide a new perspective for the elucidation of the special lifestyle of the fungal endophytes. We found that endophytic F. lateritium has a smaller genome, fewer clusters and genes associated with pathogenicity, and fewer plant cell wall degrading enzymes (PCWDEs). There were also relatively fewer secondary metabolisms and typical Fusarium spp. toxins, and a lack of the key Fusarium spp. pathogenicity factor, secreted in xylem (SIX), but the endophytic fungi may be more sophisticated in their regulation of the colonization process. It is hypothesized that the endophytic fungi may have maintained their symbiosis with plants due to the relatively homogeneous microenvironment in plants for a long period of time, considering only plant interactions and discarding the relevant pathogenicity factors, and that their endophytic evolutionary tendency may tend to be genome streamlining and to enhance the fineness of the regulation of plant interactions, thus maintaining their symbiotic status with plants.

10.
Metabolites ; 14(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39195549

RESUMEN

In recent years, afforestation has been conducted in China's hot and dry valleys. However, there is still a paucity of knowledge regarding the performance of tree species in these semi-arid regions, particularly with regard to interspecies differences. The present study compares the growth and metabolome characteristics of two widely used cypress species, namely Cupressus chengiana and Platycladus orientalis, grown at two sites with distinct climate conditions in the hot and dry Minjiang Valley in southwestern China. The findings indicate that C. chengiana trees exhibit superior growth rates compared to P. orientalis trees at both study sites. In comparison to P. orientalis trees, C. chengiana trees demonstrated a greater tendency to close their stomata in order to prevent water loss at the hotter and drier site, Llianghekou (LHK). Additionally, C. chengiana trees exhibited significantly lower hydrogen peroxide levels than P. orientalis trees, either due to lower production and/or higher scavenging of reactive oxygen species. C. chengiana trees accumulated soluble sugars as well as sugar derivatives, particularly those involved in sucrose and galactose metabolisms under stressful conditions. The species-specific differences were also reflected in metabolites involved in the tricarboxylic acid cycle, nitrogen, and secondary metabolisms. The metabolome profiles of the two species appeared to be influenced by the prevailing climatic conditions. It appeared that the trees at the drier and hotter site, LHK, were capable of efficient nitrogen uptake from the soil despite the low soil nitrogen concentration. This study is the first to compare the growth performance and metabolic profiles of two widely used tree species with high resistance to adverse conditions. In addition to the species-specific differences and adaptations to different sites, the present study also provides insights into potential management strategies to alleviate abiotic stress, particularly with regard to nitrogen nutrients, in the context of climate change.

11.
J Hazard Mater ; 479: 135669, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39208627

RESUMEN

Landfill leachate treatment plants (LLTPs) harbor a vast reservoir of uncultured microbes, yet limited studies have systematically unraveled their functional potentials within LLTPs. Combining 36 metagenomic and 18 metatranscriptomic datasets from a full-scale LLTP, we unveiled a double-edged sword role of unknown species in leachate biotreatment and environmental implication. We identified 655 species-level genome bins (SGBs) spanning 47 bacterial and 3 archaeal phyla, with 75.9 % unassigned to any known species. Over 90 % of up-regulated functional genes in biotreatment units, compared to the leachate influent, were carried by unknown species and actively participated in carbon, nitrogen, and sulfur cycles. Approximately 79 % of the 37,366 carbohydrate active enzymes (CAZymes), with ∼90 % novelty and high expression, were encoded by unknown species, exhibiting great potential in biodegrading carbohydrate compounds linked to human meat-rich diets. Unknown species offered a valuable genetic resource of thousands of versatile, abundant, and actively expressed metabolic gene clusters (MGCs) and biosynthetic gene clusters (BGCs) for enhancing leachate treatment. However, unknown species may contribute to the emission of hazardous N2O/H2S and represented significant reservoirs for antibiotic-resistant pathogens that posed environmental safety risks. This study highlighted the significance of considering both positive and adverse effects of LLTP microbes to optimize LLTP performance.

12.
New Phytol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149848

RESUMEN

Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.

13.
Sci Rep ; 14(1): 18588, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127740

RESUMEN

True morels (Morchella) are globally renowned medicinal and edible mushrooms. White mold disease caused by fungi is the main disease of Morchella, which has the characteristics of wide incidence and strong destructiveness. The disparities observed in the isolation rates of different pathogens indicate their varying degrees of host adaptability and competitive survival abilities. In order to elucidate its potential mechanism, this study, the pathogen of white mold disease from Dafang county, Guizhou Province was isolated and purified, identified as Pseudodiploöspora longispora by morphological, molecular biological and pathogenicity tests. Furthermore, high-quality genome of P. longisporus (40.846 Mb) was assembled N50 of 3.09 Mb, predicts 7381 protein-coding genes. Phylogenetic analysis of single-copy homologous genes showed that P. longispora and Zelopaecilomyces penicillatus have the closest evolutionary relationship, diverging into two branches approximately 50 (44.3-61.4) MYA. Additionally, compared with the other two pathogens causing Morchella disease, Z. penicillatus and Cladobotryum protrusum, it was found that they had similar proportions of carbohydrate enzyme types and encoded abundant cell wall degrading enzymes, such as chitinase and glucanase, indicating their important role in disease development. Moreover, the secondary metabolite gene clusters of P. longispora and Z. penicillatus show a high degree of similarity to leucinostatin A and leucinostatin B (peptaibols). Furthermore, a gene cluster with synthetic toxic substance Ochratoxin A was also identified in P. longispora and C. protrusum, indicating that they may pose a potential threat to food safety. This study provides valuable insights into the genome of P. longispora, contributing to pathogenicity research.


Asunto(s)
Genoma Fúngico , Genómica , Filogenia , Genómica/métodos , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/aislamiento & purificación , Evolución Molecular , Proteínas Fúngicas/genética
14.
G3 (Bethesda) ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141591

RESUMEN

Some Basidiomycete fungi are important plant pathogens, and certain species have been associated with the grapevine trunk disease esca. We present the genomes of four species associated with esca: Fomitiporia mediterranea, Fomitiporia polymorpha, Tropicoporus texanus, and Inonotus vitis. We generated high-quality phased genome assemblies using long-read sequencing. The genomic and functional comparisons identified potential virulence factors, suggesting their roles in disease development. Similar to other white-rot fungi known for their ability to degrade lignocellulosic substrates, these four genomes encoded a variety of lignin peroxidases and carbohydrate-active enzymes (CAZymes) such as CBM1, AA9, and AA2. The analysis of gene family expansion and contraction revealed dynamic evolutionary patterns, particularly in genes related to secondary metabolite production, plant cell wall decomposition, and xenobiotic degradation. The availability of these genomes will serve as a reference for further studies of diversity and evolution of virulence factors and their roles in esca symptoms and host resistance.

15.
Chemosphere ; 364: 143046, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117087

RESUMEN

Consento (CON) poses a significant environmental hazard as a systemic fungicide, adversely affecting the health of non-target organisms. Nitric oxide (NO), a signaling molecule, is known to play a crucial role in plant physiology and abiotic stress tolerance. However, whether NO plays any role to enhance fungicide CON tolerance in wheat seedlings is yet unclear. Therefore, we conducted a hydroponic experiment i) to investigate the morpho-physio-biochemical changes of wheat seedlings to fungicide CON stress, and ii) to examine the effects of NO and fungicide CON treatments on oxidative damage, antioxidant system, secondary metabolism and detoxification of systemic fungicide in wheat seedlings. The results showed that CON fungicide at the highest (4X) concentration significantly decreased wheat seedlings fresh weight (46.89%), shoot length (40.26%), root length (56.11%) and total chlorophyll contents (67.44%) in a dose response relationship. Moreover, CON significantly increased hydrogen peroxide, malondialdehyde, catalase, ascorbate peroxidase, glutathione-S-transferase, and peroxidase activities while decreased reduced glutathione (GSH) content. This ultimately impaired the redox homeostasis of cells, leading to oxidative damage in cell membrane. Under fungicide treatment, the addition of NO reduced the fungicide phytotoxicity, with an increase of over 60% in seedling growth. The NO application mitigated CON phytotoxicity as reflected by significantly increased chlorophyll pigments (69.88%) and decreased oxidative damage in wheat leaves. Indeed, the NO alleviatory effect was able to increase the tolerance of seedlings to fungicide, which resulted increments in antioxidant and detoxification enzymes activity, with the enhanced GSH level (78.54%). Interestingly, NO alleviated CON phytotoxicity through the phenylpropanoid pathway by enhancing the activity of secondary metabolism enzymes such as phenylalanine ammonia-lyase (47.28%), polyphenol oxidase (9%), and associated metabolites such as phenolic acids (77.62%), flavonoids (34.33%) in wheat leaves. Our study has provided evidence that NO plays a key role in the metabolism and detoxification of systemic fungicide in wheat through enhanced activity of antioxidants, detoxifications and secondary metabolic enzymes.

16.
Metabolomics ; 20(5): 90, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095664

RESUMEN

INTRODUCTION: Fungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. OBJECTIVES: To prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. METHODS: The 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. RESULTS: We isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated-Omics datasets. CONCLUSIONS: This work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery.


Asunto(s)
Vías Biosintéticas , Hongos , Metabolómica , Familia de Multigenes , Humanos , Metabolómica/métodos , Hongos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo
17.
Microorganisms ; 12(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39203413

RESUMEN

The natural soil environment of Streptomyces is characterized by variations in the availability of nitrogen, carbon, phosphate and sulfur, leading to complex primary and secondary metabolisms. Their remarkable ability to adapt to fluctuating nutrient conditions is possible through the utilization of a large amount of substrates by diverse intracellular and extracellular enzymes. Thus, Streptomyces fulfill an important ecological role in soil environments, metabolizing the remains of other organisms. In order to survive under changing conditions in their natural habitats, they have the possibility to fall back on specialized enzymes to utilize diverse nutrients and supply compounds from primary metabolism as precursors for secondary metabolite production. We aimed to summarize the knowledge on the C-, N-, P- and S-metabolisms in the genus Streptomyces as a source of building blocks for the production of antibiotics and other relevant compounds.

18.
Curr Opin Plant Biol ; 81: 102607, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053147

RESUMEN

Terpenoids are ubiquitous to all kingdoms of life and are one of the most diverse groups of compounds, both structurally and functionally. Despite being derived from common precursors, isopentenyl diphosphate and dimethylallyl diphosphate, their exceptional diversity is partly driven by the substrate and product promiscuity of terpene synthases that produce a wide array of terpene skeletons. Plant terpene synthases can be subdivided into different subfamilies based on sequence homology and function. However, in many cases, structural architecture of the enzyme is more essential to product specificity than primary sequence alone, and distantly related terpene synthases can often mediate similar reactions. As such, the focus of this brief review is on some of the recent progress in understanding terpene synthase function and diversity.


Asunto(s)
Transferasas Alquil y Aril , Plantas , Terpenos , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Plantas/metabolismo , Plantas/enzimología , Terpenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
19.
Plant Sci ; 347: 112205, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39069007

RESUMEN

Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L. var. italica) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.


Asunto(s)
Brassica , Glucosinolatos , Fenoles , Plantones , Glucosinolatos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Brassica/metabolismo , Brassica/crecimiento & desarrollo , Fenoles/metabolismo , Metabolismo Secundario , Extractos Vegetales/metabolismo
20.
Methods Mol Biol ; 2827: 405-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985285

RESUMEN

The engineering of plant cell cultures to produce high-value natural products is suggested to be a safe, low-cost, and environmentally friendly route to produce a wide range of chemicals. Given that the expression of heterologous biosynthetic pathways in plant tissue culture is limited by a lack of detailed protocols, the biosynthesis of high-value metabolites in plant cell culture is constrained compared with that in microbes. However, both Arabidopsis thaliana and Nicotiana benthamiana can be efficiently transformed with multigene constructs to produce high-value natural products in stable plant cell cultures. This chapter provides a detailed protocol as to how to engineer the plant cell culture as bio-factories for metabolite biosynthesis.


Asunto(s)
Arabidopsis , Productos Biológicos , Nicotiana , Productos Biológicos/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Técnicas de Cultivo de Tejidos/métodos , Células Vegetales/metabolismo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/genética , Metaboloma , Vías Biosintéticas , Metabolómica/métodos , Técnicas de Cultivo de Célula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA