Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402550, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119875

RESUMEN

Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.

2.
EMBO J ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160274

RESUMEN

Splicing and endoplasmic reticulum (ER)-proteostasis are two key processes that ultimately regulate the functional proteins that are produced by a cell. However, the extent to which these processes interact remains poorly understood. Here, we identify SNRPB and other components of the Sm-ring, as targets of the unfolded protein response and novel regulators of export from the ER. Mechanistically, The Sm-ring regulates the splicing of components of the ER export machinery, including Sec16A, a component of ER exit sites. Loss of function of SNRPB is causally linked to cerebro-costo-mandibular syndrome (CCMS), a genetic disease characterized by bone defects. We show that heterozygous deletion of SNRPB in mice resulted in bone defects reminiscent of CCMS and that knockdown of SNRPB delays the trafficking of type-I collagen. Silencing SNRPB inhibited osteogenesis in vitro, which could be rescued by overexpression of Sec16A. This rescue indicates that the role of SNRPB in osteogenesis is linked to its effects on ER-export. Finally, we show that SNRPB is a target for the unfolded protein response, which supports a mechanistic link between the spliceosome and ER-proteostasis. Our work highlights components of the Sm-ring as a novel node in the proteostasis network, shedding light on CCMS pathophysiology.

3.
Dev Cell ; 58(19): 1880-1897.e11, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37643612

RESUMEN

The dual-specificity kinase DYRK3 controls the formation and dissolution of multiple biomolecular condensates, regulating processes including stress recovery and mitotic progression. Here, we report that DYRK3 functionally interacts with proteins associated with endoplasmic reticulum (ER) exit sites (ERESs) and that inhibition of DYRK3 perturbs the organization of the ERES-Golgi interface and secretory trafficking. DYRK3-mediated regulation of ERES depends on the N-terminal intrinsically disordered region (IDR) of the peripheral membrane protein SEC16A, which co-phase separates with ERES components to form liquid-like condensates on the surface of the ER. By modulating the liquid-like properties of ERES, we show that their physical state is essential for functional cargo trafficking through the early secretory pathway. Our findings support a mechanism whereby phosphorylation by DYRK3 and its reversal by serine-threonine phosphatases regulate the material properties of ERES to create a favorable physicochemical environment for directional membrane traffic in eukaryotic cells.

4.
Zhonghua Gan Zang Bing Za Zhi ; 31(6): 621-626, 2023 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-37400387

RESUMEN

Objective: To investigate the clinical value of plasma scaffold protein SEC16A level and related models in the diagnosis of hepatitis B virus-related liver cirrhosis (HBV-LC) and hepatocellular carcinoma (HBV-HCC). Methods: Patients with HBV-LC and HBV-HCC and a healthy control group diagnosed by clinical, laboratory examination, imaging, and liver histopathology at the Third Hospital of Hebei Medical University between June 2017 and October 2021 were selected. Plasma SEC16A level was detected using an enzyme-linked immunosorbent assay (ELISA). Serum alpha-fetoprotein (AFP) was detected using an electrochemiluminescence instrument. SPSS 26.0 and MedCalc 15.0 statistical software were used to analyze the relationship between plasma SEC16A levels and the occurrence and development of liver cirrhosis and liver cancer. A sequential logistic regression model was used to analyze relevant factors. SEC16A was established through a joint diagnostic model. Receiver operating characteristic curve was used to evaluate the clinical efficacy of the model for liver cirrhosis and hepatocellular carcinoma diagnosis. Pearson correlation analysis was used to identify the influencing factors of novel diagnostic biomarkers. Results: A total of 60 cases of healthy controls, 60 cases of HBV-LC, and 52 cases of HBV-HCC were included. The average levels of plasma SEC16A were (7.41 ± 1.66) ng/ml, (10.26 ± 1.86) ng/ml, (12.79 ± 1.49) ng /ml, respectively, with P < 0.001. The sensitivity and specificity of SEC16A in the diagnosis of liver cirrhosis and hepatocellular carcinoma were 69.44% and 71.05%, and 89.36% and 88.89%, respectively. SEC16A, age, and AFP were independent risk factors for the occurrence of HBV-LC and HCC. SAA diagnostic cut-off values, sensitivity, and specificity were 26.21 and 31.46, 77.78% and 81.58%, and 87.23% and 97.22%, respectively. The sensitivity and specificity for HBV-HCC early diagnosis were 80.95% and 97.22%, respectively. Pearson correlation analysis showed that AFP level was positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), and γ-glutamyltransferase (GGT) with P < 0.01, while the serum SEC16A level was only slightly positively correlated with ALT and AST in the liver cirrhosis group (r = 0.268 and 0.260, respectively, P < 0.05). Conclusion: Plasma SEC16A can be used as a diagnostic marker for hepatitis B-related liver cirrhosis and hepatocellular carcinoma. SEC16A, combined with age and the AFP diagnostic model with SAA, can significantly improve the rate of HBV-LC and HBV-HCC early diagnosis. Additionally, its application is helpful for the diagnosis and differential diagnosis of the progression of HBV-related diseases.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , alfa-Fetoproteínas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte Vesicular , Cirrosis Hepática/complicaciones , Hepatitis B/complicaciones , Curva ROC , Virus de la Hepatitis B/metabolismo , Biomarcadores de Tumor
5.
J Virol ; 97(7): e0018023, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37338368

RESUMEN

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Asunto(s)
Retículo Endoplásmico , Hepatitis C , Humanos , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vías Secretoras , Hepacivirus/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transporte de Proteínas , Hepatitis C/metabolismo , Estadios del Ciclo de Vida , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
6.
Chinese Journal of Hepatology ; (12): 621-626, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-986180

RESUMEN

Objective: To investigate the clinical value of plasma scaffold protein SEC16A level and related models in the diagnosis of hepatitis B virus-related liver cirrhosis (HBV-LC) and hepatocellular carcinoma (HBV-HCC). Methods: Patients with HBV-LC and HBV-HCC and a healthy control group diagnosed by clinical, laboratory examination, imaging, and liver histopathology at the Third Hospital of Hebei Medical University between June 2017 and October 2021 were selected. Plasma SEC16A level was detected using an enzyme-linked immunosorbent assay (ELISA). Serum alpha-fetoprotein (AFP) was detected using an electrochemiluminescence instrument. SPSS 26.0 and MedCalc 15.0 statistical software were used to analyze the relationship between plasma SEC16A levels and the occurrence and development of liver cirrhosis and liver cancer. A sequential logistic regression model was used to analyze relevant factors. SEC16A was established through a joint diagnostic model. Receiver operating characteristic curve was used to evaluate the clinical efficacy of the model for liver cirrhosis and hepatocellular carcinoma diagnosis. Pearson correlation analysis was used to identify the influencing factors of novel diagnostic biomarkers. Results: A total of 60 cases of healthy controls, 60 cases of HBV-LC, and 52 cases of HBV-HCC were included. The average levels of plasma SEC16A were (7.41 ± 1.66) ng/ml, (10.26 ± 1.86) ng/ml, (12.79 ± 1.49) ng /ml, respectively, with P < 0.001. The sensitivity and specificity of SEC16A in the diagnosis of liver cirrhosis and hepatocellular carcinoma were 69.44% and 71.05%, and 89.36% and 88.89%, respectively. SEC16A, age, and AFP were independent risk factors for the occurrence of HBV-LC and HCC. SAA diagnostic cut-off values, sensitivity, and specificity were 26.21 and 31.46, 77.78% and 81.58%, and 87.23% and 97.22%, respectively. The sensitivity and specificity for HBV-HCC early diagnosis were 80.95% and 97.22%, respectively. Pearson correlation analysis showed that AFP level was positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), and γ-glutamyltransferase (GGT) with P < 0.01, while the serum SEC16A level was only slightly positively correlated with ALT and AST in the liver cirrhosis group (r = 0.268 and 0.260, respectively, P < 0.05). Conclusion: Plasma SEC16A can be used as a diagnostic marker for hepatitis B-related liver cirrhosis and hepatocellular carcinoma. SEC16A, combined with age and the AFP diagnostic model with SAA, can significantly improve the rate of HBV-LC and HBV-HCC early diagnosis. Additionally, its application is helpful for the diagnosis and differential diagnosis of the progression of HBV-related diseases.


Asunto(s)
Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , alfa-Fetoproteínas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte Vesicular , Cirrosis Hepática/complicaciones , Hepatitis B/complicaciones , Curva ROC , Virus de la Hepatitis B/metabolismo , Biomarcadores de Tumor
7.
Semin Immunopathol ; 43(2): 245-253, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33532928

RESUMEN

The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.


Asunto(s)
Espondilitis Anquilosante , Aminopeptidasas/genética , Presentación de Antígeno , Estudio de Asociación del Genoma Completo , Antígeno HLA-B27/genética , Humanos , Espondilitis Anquilosante/etiología , Espondilitis Anquilosante/genética , Factores de Virulencia
8.
J Dent Res ; 100(3): 293-301, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33034243

RESUMEN

Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI; OMIM #130900) is a genetic disorder exhibiting severe hardness defects and reduced fracture toughness of dental enamel. While the condition is nonsyndromic, it can be associated with other craniofacial anomalies, such as malocclusions and delayed or failed tooth eruption. Truncation mutations in FAM83H (OMIM *611927) are hitherto the sole cause of ADHCAI. With human genetic studies, Fam83h knockout and mutation-knock-in mouse models indicated that FAM83H does not serve a critical physiologic function during enamel formation and suggested a neomorphic mutation mechanism causing ADHCAI. The function of FAM83H remains obscure. FAM83H has been shown to interact with various isoforms of casein kinase 1 (CK1) and keratins and to mediate organization of keratin cytoskeletons and desmosomes. By considering FAM83H a scaffold protein to anchor CK1s, further molecular characterization of the protein could gain insight into its functions. In this study, we characterized 9 kindreds with ADHCAI and identified 3 novel FAM83H truncation mutations: p.His437*, p.Gln459*, and p.Glu610*. Some affected individuals exhibited hypoplastic phenotypes, in addition to the characteristic hypocalcification enamel defects, which have never been well documented. Failed eruption of canines or second molars in affected persons was observed in 4 of the families. The p.Glu610* mutation was located in a gap area (amino acids 470 to 625) within the zone of previously reported pathogenic variants (amino acids 287 to 694). In vitro pull-down studies with overexpressed FAM83H proteins in HEK293 cells demonstrated an interaction between FAM83H and SEC16A, a protein component of the COP II complex at endoplasmic reticulum exit sites. The interaction was mediated by the middle part (amino acids 287 to 657) of mouse FAM83H protein. Results of this study significantly extended the phenotypic and genotypic spectrums of FAM83H-associated ADHCAI and suggested a role for FAM83H in endoplasmic reticulum-to-Golgi vesicle trafficking and protein secretion (dbGaP phs001491.v1.p1).


Asunto(s)
Amelogénesis Imperfecta , Amelogénesis Imperfecta/genética , Retículo Endoplásmico/genética , Aparato de Golgi , Células HEK293 , Humanos , Proteínas , Proteínas de Transporte Vesicular
9.
Autophagy ; 16(12): 2303-2304, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33025853

RESUMEN

BMP2K (BMP2 inducible kinase) is a serine-threonine kinase with high amino acid homology to a known endocytic regulator, AAK1, and thus has been suspected to act in endocytosis. In our recent study, we report that BMP2K kinase regulates erythroid maturation in a manner that could not be explained by its involvement in endocytosis. Instead, we discovered that in erythroid cells, its splicing variants (BMP2K-L and BMP2K-S) act in opposing ways to regulate autophagic degradation, an important event in erythroid maturation. We also found that both isoforms could interact with a mammalian counterpart of yeast Sec16, SEC16A, a regulator of COPII vesicle-dependent secretory trafficking. BMP2K-L and -S differentially affect SEC16A levels and distribution, as well as abundance of SEC31A at COPII assemblies (SEC31A load). The regulation of SEC31A load by BMP2K variants concerned assemblies positive for SEC24B, a SEC16A interactor implicated in macroautophagy/autophagy. Hence, we found an unusual mechanism of two splicing variants of a kinase playing opposing roles in autophagy, potentially via differential regulation of SEC16A-dependent COPII assembly. Thereby they constitute a regulatory system, that we call the BMP2K-L/S system, fine-tuning autophagy and modulating erythroid maturation.


Asunto(s)
Retículo Endoplásmico , Proteínas de Transporte Vesicular , Animales , Autofagia/genética , Células Eritroides , Aparato de Golgi
10.
Traffic ; 20(7): 491-503, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059169

RESUMEN

Coat proteins play multiple roles in the life cycle of a membrane-bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII-coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER-Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Animales , Humanos , Transporte de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Traffic ; 19(11): 823-839, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29978536

RESUMEN

Our view of the secretory pathway has evolved from a morphological one to one that includes molecular mechanistic understanding of basic traffic components. These components include coat complexes involved in cargo sorting and budding and proteins that mediate targeting, tethering and fusion. The expanding repertoire of regulators that control basic traffic activities begins to paint a unified morphological-molecular view of secretion. The emerging picture provides key insights into the coupling of secretion with physiology. This review examines aspects of morphological-molecular relations that are derived from studies on traffic from the endoplasmic reticulum carried by the coat protein complex II.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vías Secretoras , Animales , Humanos , Transporte de Proteínas
12.
EMBO J ; 33(20): 2314-31, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25201882

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER-Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER-Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Enfermedad de Parkinson/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Línea Celular , Células Cultivadas , Espinas Dendríticas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Modelos Biológicos , Mutación Missense , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA